all | frequencies |
|
|
|
|
|
exhibits | applications |
---|---|---|---|---|---|---|---|---|
manuals | photos | label |
app s | submitted / available | |||||||
---|---|---|---|---|---|---|---|---|
1 2 3 |
|
Integration Instructions | Users Manual | 1.40 MiB | March 11 2022 | |||
1 2 3 |
|
Modular Integration Instructions | Users Manual | 4.54 MiB | May 24 2022 | |||
1 2 3 |
|
Internal Photos | Internal Photos | 100.21 KiB | February 16 2023 | |||
1 2 3 |
|
External Photos | External Photos | 699.51 KiB | February 16 2023 | |||
1 2 3 |
|
ID Label | ID Label/Location Info | 183.65 KiB | February 16 2023 | |||
1 2 3 |
|
Attesation regarding covered equipment | Attestation Statements | 95.47 KiB | February 16 2023 | |||
1 2 3 |
|
Cover letter | Cover Letter(s) | 38.37 KiB | February 16 2023 | |||
1 2 3 |
|
Modular Integration Instructions | Operational Description | 154.30 KiB | February 16 2023 | |||
1 2 3 |
|
Request for Confidentiality | Cover Letter(s) | 17.34 KiB | February 16 2023 | |||
1 2 3 |
|
SAR report | RF Exposure Info | 474.02 KiB | February 16 2023 | |||
1 2 3 |
|
US Agent Attestation | Attestation Statements | 89.99 KiB | February 16 2023 | |||
1 2 3 | operational description | Operational Description | February 16 2023 | confidential |
1 2 3 | Integration Instructions | Users Manual | 1.40 MiB | March 11 2022 |
EC25-A User Manual LTE Module Series Rev. EC25-A_User_Manual_V1.0 Date: 2016-03-28 www.quectel.com LTE Module EC25-A User Manual Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd. Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233 Tel: +86 21 5108 6236 Mail: info@quectel.com Or our local office, for more information, please visit:
http://www.quectel.com/support/salesupport.aspx For technical support, to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx Or Email: Support@quectel.com GENERAL NOTES QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright Quectel Wireless Solutions Co., Ltd. 2016. All rights reserved. EC25-A_User_Manual Confidential / Released 1 / 7 0 LTE Module EC25-A User Manual About the Document History Revision Date Author Description V1.0 2016-03-28 Woody WU Initial EC25-A_User_Manual Confidential / Released 2 / 7 0 LTE Module EC25-A User Manual Contents About the Document ................................................................................................................................... 2 Contents ....................................................................................................................................................... 3 Table Index ................................................................................................................................................... 5 Figure Index ................................................................................................................................................. 6 1 Introduction .......................................................................................................................................... 7 Safety Information ................................................................................................................... 7 1.1. 2 Product Concept .................................................................................................................................. 9 2.1. General Description ................................................................................................................ 9 2.2. Directives and Standards ..................................................................................................... 10 2.2.1. FCC Statement ............................................................................................................. 10 2.3. Key Features .......................................................................................................................... 10 Functional Diagram ............................................................................................................... 12 2.4. Evaluation Board ................................................................................................................... 13 2.5. 3 Application Interface ......................................................................................................................... 14 3.1. General Description .............................................................................................................. 14 Pin Assignment ...................................................................................................................... 14 3.2. Pin Description ...................................................................................................................... 16 3.3. 3.4. Operating Modes ................................................................................................................... 21 Power Saving ......................................................................................................................... 22 3.5. 3.5.1. Sleep Mode ................................................................................................................... 22 3.5.1.1. UART Application .............................................................................................. 22 3.5.1.2. USB Application with USB Remote Wakeup Function .................................. 23 3.5.1.3. USB Application with USB Suspend/Resume and RI Function .................... 23 3.5.1.4. USB Application without USB Suspend Function ......................................... 24 3.5.2. Airplane Mode .............................................................................................................. 25 Power Supply ......................................................................................................................... 25 3.6.1. Power Supply Pins ....................................................................................................... 25 3.6.2. Decrease Voltage Drop ................................................................................................ 26 3.6.3. Reference Design for Power Supply .......................................................................... 27 3.6.4. Monitor the Power Supply ........................................................................................... 28 Turn on and off Scenarios .................................................................................................... 28 3.7.1. Turn on Module Using the PWRKEY .......................................................................... 28 3.7.2. Turn off Module ............................................................................................................ 30 3.7.2.1. Turn off Module Using the PWRKEY Pin......................................................... 30 3.7.2.2. Turn off Module Using AT Command .............................................................. 30 3.8. Reset the Module ................................................................................................................... 30 3.9. USIM Card Interface .............................................................................................................. 32 3.10. USB Interface ......................................................................................................................... 34 3.6. 3.7. EC25-A_User_Manual Confidential / Released 3 / 7 0 LTE Module EC25-A User Manual 3.11. UART Interface ....................................................................................................................... 36 3.12. PCM and I2C Interface ........................................................................................................... 38 3.13. ADC Function ......................................................................................................................... 41 3.14. Network Status Indication .................................................................................................... 41 3.15. STATUS................................................................................................................................... 42 3.16. Behavior of the RI .................................................................................................................. 43 4 GNSS Receiver ................................................................................................................................... 45 4.1. General Description .............................................................................................................. 45 4.2. GNSS Performance ............................................................................................................... 45 Layout Guideline.................................................................................................................... 46 4.3. 5 Antenna Interface ............................................................................................................................... 47 5.1. Main/Rx-diversity Antenna Interface ................................................................................... 47 5.1.1. Pin Definition ................................................................................................................ 47 5.1.2. Operating Frequency ................................................................................................... 47 5.1.3. Reference Design ......................................................................................................... 48 5.2. GNSS Antenna Interface ....................................................................................................... 48 5.3. Antenna Installation .............................................................................................................. 50 5.3.1. Antenna Requirement .................................................................................................. 50 Install the Antenna with RF Connector ...................................................................... 50 5.3.2. 6 Electrical, Reliability and Radio Characteristics ............................................................................ 53 6.1. Absolute Maximum Ratings ................................................................................................. 53 Power Supply Ratings ........................................................................................................... 53 6.2. 6.3. Operating Temperature ......................................................................................................... 54 6.4. Current Consumption ........................................................................................................... 54 6.5. RF Output Power ................................................................................................................... 54 6.6. RF Receiving Sensitivity ....................................................................................................... 55 Electrostatic Discharge ......................................................................................................... 55 6.7. 7 Mechanical Dimensions .................................................................................................................... 57 7.1. Mechanical Dimensions of the Module ............................................................................... 57 7.2. Footprint of Recommendation ............................................................................................. 59 Top View of the Module ........................................................................................................ 60 7.3. 7.4. Bottom View of the Module .................................................................................................. 60 8 Storage and Manufacturing .............................................................................................................. 61 Storage.................................................................................................................................... 61 8.1. 8.2. Manufacturing and Welding ................................................................................................. 61 Packaging ............................................................................................................................... 62 8.3. 9 Appendix A Reference ....................................................................................................................... 64 10 Appendix B GPRS Coding Scheme ................................................................................................. 68 11 Appendix C GPRS Multi-slot Class .................................................................................................. 69 12 Appendix D EDGE Modulation and Coding Scheme ..................................................................... 70 EC25-A_User_Manual Confidential / Released 4 / 7 0 LTE Module EC25-A User Manual Table Index TABLE 1: EC25 SERIES FREQUENCY BANDS ........................................................................................ 9 TABLE 2: EC25 KEY FEATURES .............................................................................................................. 10 TABLE 3: IO PARAMETERS DEFINITION ................................................................................................ 16 TABLE 4: PIN DESCRIPTION ................................................................................................................... 16 TABLE 5: OVERVIEW OF OPERATING MODES ..................................................................................... 21 TABLE 6: VBAT AND GND PINS ............................................................................................................... 26 TABLE 7: PWRKEY PIN DESCRIPTION ................................................................................................... 28 TABLE 8: RESET_N PIN DESCRIPTION .................................................................................................. 31 TABLE 9: PIN DEFINITION OF THE USIM INTERFACE .......................................................................... 32 TABLE 10: USB PIN DESCRIPTION ......................................................................................................... 34 TABLE 11: PIN DEFINITION OF THE MAIN UART INTERFACE ............................................................. 36 TABLE 12: PIN DEFINITION OF THE DEBUG UART INTERFACE ......................................................... 36 TABLE 13: LOGIC LEVELS OF DIGITAL I/O............................................................................................. 37 TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACE .................................................................. 39 TABLE 15: PIN DEFINITION OF THE ADC ............................................................................................... 41 TABLE 16: CHARACTERISTIC OF THE ADC ........................................................................................... 41 TABLE 17: PIN DEFINITION OF NETWORK INDICATOR ....................................................................... 41 TABLE 18: WORKING STATE OF THE NETWORK INDICATOR ............................................................. 42 TABLE 19: PIN DEFINITION OF STATUS ................................................................................................. 43 TABLE 20: BEHAVIOR OF THE RI ............................................................................................................ 44 TABLE 21: GNSS PERFORMANCE .......................................................................................................... 45 TABLE 22: PIN DEFINITION OF THE RF ANTENNA ............................................................................... 47 TABLE 23: THE MODULE OPERATING FREQUENCIES ........................................................................ 47 TABLE 24: PIN DEFINITION OF GNSS ANTENNA .................................................................................. 49 TABLE 25: GNSS FREQUENCY ............................................................................................................... 49 TABLE 26: ANTENNA REQUIREMENTS .................................................................................................. 50 TABLE 27: ABSOLUTE MAXIMUM RATINGS ........................................................................................... 53 TABLE 28: THE MODULE POWER SUPPLY RATINGS ........................................................................... 53 TABLE 29: OPERATING TEMPERATURE ................................................................................................ 54 TABLE 30: CONDUCTED RF OUTPUT POWER...................................................................................... 55 TABLE 31: ELECTROSTATICS DISCHARGE CHARACTERISTICS ....................................................... 56 TABLE 32: RELATED DOCUMENTS ........................................................................................................ 64 TABLE 33: TERMS AND ABBREVIATIONS .............................................................................................. 64 TABLE 34: DESCRIPTION OF DIFFERENT CODING SCHEMES .......................................................... 68 TABLE 35: GPRS MULTI-SLOT CLASSES ............................................................................................... 69 TABLE 36: EDGE MODULATION AND CODING SCHEME ..................................................................... 70 EC25-A_User_Manual Confidential / Released 5 / 7 0 LTE Module EC25-A User Manual Figure Index FIGURE 1: FUNCTIONAL DIAGRAM ........................................................................................................ 12 FIGURE 2: PIN ASSIGNMENT (TOP VIEW) ............................................................................................. 15 FIGURE 3: UART SLEEP APPLICATION .................................................................................................. 22 FIGURE 4: SLEEP APPLICATION WITH USB REMOTE WAKEUP ........................................................ 23 FIGURE 5: SLEEP APPLICATION WITH RI ............................................................................................. 24 FIGURE 6: SLEEP APPLICATION WITHOUT SUSPEND FUNCTION .................................................... 24 FIGURE 7: POWER SUPPLY LIMITS DURING TRANSMIT BURST ....................................................... 26 FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY .................................................................... 27 FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY ....................................................................... 27 FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT ......................................................... 28 FIGURE 11: TURN ON THE MODULE USING KEYSTROKE .................................................................. 29 FIGURE 12: TIMING OF TURNING ON MODULE ................................................................................... 29 FIGURE 13: TIMING OF TURNING OFF MODULE .................................................................................. 30 FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT .............................. 31 FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON .............................................. 31 FIGURE 16: TIMING OF RESETTING MODULE ...................................................................................... 32 FIGURE 17: REFERENCE CIRCUIT OF 8-PIN USIM CONNECTOR ...................................................... 33 FIGURE 18: REFERENCE CIRCUIT OF 6-PIN USIM CONNECTOR ...................................................... 33 FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ................................................................. 35 FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP............................................................ 37 FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT ...................................................... 38 FIGURE 22: PRIMARY MODE TIMING ..................................................................................................... 39 FIGURE 23: AUXILIARY MODE TIMING ................................................................................................... 39 FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC ............................ 40 FIGURE 25: REFERENCE CIRCUIT OF THE NETWORK INDICATOR .................................................. 42 FIGURE 26: REFERENCE CIRCUIT OF THE STATUS............................................................................ 43 FIGURE 27: REFERENCE CIRCUIT OF ANTENNA INTERFACE ........................................................... 48 FIGURE 28: REFERENCE CIRCUIT OF GNSS ANTENNA ..................................................................... 49 FIGURE 29: DIMENSIONS OF THE UF.L-R-SMT CONNECTOR (UNIT: MM) ........................................ 51 FIGURE 30: MECHANICALS OF UF.L-LP CONNECTORS ..................................................................... 51 FIGURE 31: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) ................................................... 52 FIGURE 32: MODULE TOP AND SIDE DIMENSIONS ............................................................................. 57 FIGURE 33: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ......................................................... 58 FIGURE 34: RECOMMENDED FOOTPRINT (TOP VIEW) ...................................................................... 59 FIGURE 35: TOP VIEW OF THE MODULE .............................................................................................. 60 FIGURE 36: BOTTOM VIEW OF THE MODULE ...................................................................................... 60 FIGURE 37: LIQUIDS TEMPERATURE .................................................................................................... 62 FIGURE 38: CARRIER TAPE .................................................................................................................... 63 EC25-A_User_Manual Confidential / Released 6 / 7 0 LTE Module EC25-A User Manual 1 Introduction This document defines the EC25 module and describes its air interface and hardware interface which are connected with your application. This document can help you quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EC25 module. Associated with application notes and user guide, you can use EC25 module to design and set up mobile applications easily. 1.1. Safety Information The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC25 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customers failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers a Airplane Mode which must be enabled prior to boarding an aircraft. Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are desinged to prevent possible interference with sentitive medical equipment. EC25-A_User_Manual Confidential / Released 7 / 7 0 LTE Module EC25-A User Manual Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Your cellular terminal or mobile contains a transmitter and receiver. When it is ON , it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In locations with potencially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potencially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. EC25-A_User_Manual Confidential / Released 8 / 7 0 LTE Module EC25-A User Manual 2 Product Concept 2.1. General Description EC25 is a series of FDD-LTE /TDD-LTE /WCDMA/TD-SCDMA/CDMA/GSM wireless communication module with receive diversity, which provides data connectivity on FDD-LTE, TDD-LTE, DC-HSPA+, HSPA+, HSDPA, HSUPA, WCDMA, TD-SCDMA, CDMA, EDGE and GPRS networks. It can also provide GNSS1) and voice functionality2) for your specific application. EC25 contains four variants: EC25-E, EC25-A, EC25-V and EC25-AUT. You can choose the dedicated type based on the region or operator. The following table shows the frequency bands of EC25 series modules. Table 1: EC25-A Frequency Bands EC25-A B2/B4/B12 Not supported B2/B5 Not supported FDD-LTE
(with Rx-diversity) TDD-LTE
(with Rx-diversity) WCDMA
(with Rx-diversity) GSM GNSS GPS,GLONASS, BeiDou/Compass,Galileo,QZSS NOTES 1. 2. 1) GNSS function is optional. 2) EC25 series (EC25-E/EC25-A/EC25-V/EC25-AUT) includes Data-only and Telematics versions. Data-only version does not support voice function, while Telematics version supports it. With a tiny profile of 32.0mm 29.0mm 2.4mm, EC25 can meet almost all requirements for M2M applications such as automotive, metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone and tablet PC, etc. EC25 is an SMD type module which can be embedded in applications through its 144-pin pads, including EC25-A_User_Manual Confidential / Released 9 / 7 0 LTE Module EC25-A User Manual 80 LCC signal pads and 64 other pads. 2.2. Directives and Standards 2.2.1. FCC Statement Any Changes or modifications not expressly approved by the party responsible for compliance could void the users authority to operate the equipment. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. The outside of referring following:Contains Transmitter Module FCC ID: 2AVFA-CANGO-4G-EC21 Any similar wording that expresses the same meaning may be used. this module device must display a can use wording the enclosed module. This exterior final products label the such as contains label that to 2.3. Key Features The following table describes the detailed features of EC25 module. Table 2: EC25 Key Features Feature Details Power Supply Supply voltage: 3.3V~4.3V Typical supply voltage: 3.8V Transmitting Power LTE Features WCDMA Features Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm2dB) for LTE FDD bands Class 3 (23dBm2dB) for LTE TDD bands Support up to non-CA CAT4 Support 1.4 to 20MHz RF bandwidth Support Multiuser MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+
Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 CAT6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 CAT24 DC-HSPA+: Max 42Mbps (DL) Internet Protocol Features Support TCP/UDP/PPP/FTP/HTTP/SMTP/MMS/NTP/PING/QMI protocols Support the protocols PAP (Password Authentication Protocol) and CHAP
(Challenge Handshake Authentication Protocol) usually used for PPP connections SMS Text and PDU mode Point to point MO and MT EC25-A_User_Manual Confidential / Released 10 / 7 0 Audio Features PCM Interface USB Interface UART Interface GNSS Features AT Commands Network Indication Antenna Interface LTE Module EC25-A User Manual SMS cell broadcast SMS storage: ME by default USIM Interface Support USIM/SIM card: 1.8V, 3.0V Support one digital audio interface: PCM interface WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression Used for audio function with external codec Support 8-bit A-law, -law and 16-bit linear data formats Support long frame sync and short frame sync Support master and slave mode, but must be the master in long frame sync Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA output, software debug and firmware upgrade USB Driver: Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Window CE 5.0/6.0/7.0, Linux 2.6 or later, Android 2.3/4.0/4.2/4.4/5.0 Main UART:
Used for AT command and data transmission Baud rate reach up to 921600bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART:
Used for Linux console, log output 115200bps baud rate Rx-diversity Support LTE/WCDMA Rx-diversity Gen8C-Lite of Qualcomm Protocol: NMEA 0183 Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands Two pins including NET_MODE and NET_STATUS to indicate network connectivity status Including main antenna (ANT_MAIN), Rx-diversity antenna (ANT_DIV) and GNSS antenna (ANT_GNSS) Physical Characteristics Size: 32.00.15 29.00.15 2.40.2mm Weight: approx. 4.9g Temperature Range Normal operation: -35C ~ +75C Restricted operation: -40C ~ -35C and +75C ~ +85C Storage temperature: -45C ~ +90C Firmware Upgrade USB interface RoHS All hardware components are fully compliant with EU RoHS directive EC25-A_User_Manual Confidential / Released 11 / 7 0 LTE Module EC25-A User Manual 2.4. Functional Diagram The following figure shows a block diagram of EC25 and illustrates the major functional parts. Power management Baseband DDR+NAND flash Radio frequency Peripheral interface ANT_MAIN ANT_GNSS ANT_DIV Switch SAW Switch Duplex LNA SAW DRx APT PA Tx PRx Transceiver NAND DDR2 SDRAM IQ Control Baseband PMIC Control 19.2M XO VDD_EXT USB USIM PCM I2C UART GPIOs Figure 1: Functional Diagram EC25-A_User_Manual Confidential / Released 12 / 7 0 VBAT_RF VBAT_BB PWRKEY RESET_N ADCs STATUS LTE Module EC25-A User Manual 2.5. Evaluation Board In order to help you to develop applications with EC25, Quectel supplies an evaluation board (EVB), USB data cable, earphone, antenna and other peripherals to control or test the module. EC25-A_User_Manual Confidential / Released 13 / 7 0 LTE Module EC25-A User Manual 3 Application Interface 3.1. General Description EC25 is equipped with an 80-pin SMT pad plus 64-pin ground pads and reserved pads that can be connected to cellular application platform. Sub-interfaces included in these pads are described in detail in the following chapters:
Power supply USIM interface USB interface UART interface PCM interface ADC interface Status indication 3.2. Pin Assignment The following figure shows the pin assignment of the EC25 module. EC25-A_User_Manual Confidential / Released 14 / 7 0 LTE Module EC25-A User Manual WAKEUP_IN AP_READY RESERVED W_DISABLE#
NET_MODE NET_STATUS VDD_EXT RESERVED RESERVED 7 141 142 USIM_PRESENCE GND GND USIM_GND DBG_RXD DBG_TXD USIM_VDD USIM_DATA USIM_CLK USIM_RST RESERVED 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 R E S E R V E D R E S E R V E D 1 1 4 1 1 3 129 117 130 118 131 119 132 120 133 121 134 122 135 123 136 124 137 125 138 126 139 127 140 128 1 1 6 1 1 5 R E S E R V E D R E S E R V E D U S B _ V B U S G N D U S B _ D M U S B _ D P R X D T X D D T R R T S C T S D C D R I S T A T U S V B A T _ B B V B A T _ B B V B A T _ R F V B A T _ R F G N D R E S E R V E D 7 2 7 1 7 0 6 9 6 8 6 7 6 6 6 5 6 4 6 3 6 2 6 1 6 0 5 9 5 8 5 7 5 6 5 5 108 103 99 95 90 85 109 104 100 96 91 86 110 105 92 87 82 83 84 79 80 81 76 77 78 73 74 75 111 106 101 97 93 88 112 107 102 98 94 89 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 G N D G N D R E S E T _ N P W R K E Y P C M _ I N R E S E R V E D P C M _ O U T P C M _ S Y N C P C M _ C L K R E S E R V E D R E S E R V E D R E S E R V E D R E S E R V E D R E S E R V E D R E S E R V E D R E S E R V E D G N D A N T _ D V I 48 144 143 54 53 52 51 50 49 47 46 45 44 43 42 41 40 39 38 37 GND GND GND GND GND GND ANT_MAIN RESERVED RESERVED ANT_GNSS GND ADC0 ADC1 RESERVED I2C_SDA I2C_SCL RESERVED RESERVED RESERVED RESERVED Power Pins GND Pins Signal Pins RESERVED Pins Figure 2: Pin Assignment (Top View) 1. Keep all RESERVED pins and unused pins unconnected. 2. GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84 should not be designed in schematic and PCB decal. means these interface functions are only supported on Telematics version. 3. EC25-A_User_Manual Confidential / Released 15 / 7 0 NOTES LTE Module EC25-A User Manual 3.3. Pin Description The following tables show the EC25s pin definition. Table 3: IO Parameters Definition Type Description Bidirectional input/output Digital input Digital output Power input Power output Analog input Analog output Open drain Table 4: Pin Description Power Supply Pin Name Pin No. I/O Description DC Characteristics Comment VBAT_BB 59, 60 PI VBAT_RF 57, 58 PI Power supply for module baseband part. Vmax=4.3V Vmin=3.3V Vnorm=3.8V Power supply for module RF part. Vmax=4.3V Vmin=3.3V Vnorm=3.8V VDD_EXT 7 PO Provide 1.8V for external circuit. Vnorm=1.8V IOmax=50mA It must be able to provide sufficient current up to 0.8A. It must be able to provide sufficient current up to 1.8A in a transmitting burst. Power supply for external GPIOs pull up circuits. GND Ground. 8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, EC25-A_User_Manual Confidential / Released 16 / 7 0 IO DI DO PI PO AI AO OD LTE Module EC25-A User Manual 85~112 Turn on/off Pin Name Pin No. I/O Description DC Characteristics Comment PWRKEY 21 DI Turn on/off the module. RESET_N 20 DI Reset the module. VIHmax=2.1V VIHmin=1.3V VILmax=0.5V VIHmax=2.1V VIHmin=1.3V VILmax=0.5V Status Indication Pin Name Pin No. I/O Description DC Characteristics Comment STATUS 61 OD NET_MODE 5 DO NET_ STATUS 6 DO USB Interface Indicate the module operating status. Indicate the module network registration mode. Indicate the module network activity status. The drive current should be less than 0.9mA. Require external pull-up. If unused, keep it open. VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment USB_VBUS 71 PI USB detection. Vnorm=5.0V USB_DP 69 IO USB_DM 70 IO USIM Interface USB differential data bus. USB differential data bus. Compliant with USB 2.0 standard specification. Compliant with USB 2.0 standard specification. Require differential impedance of 90ohm. Require differential impedance of 90ohm. Pin Name Pin No. I/O Description DC Characteristics Comment USIM_GND 10 Specified ground for USIM card. USIM_VDD 14 PO Power supply for USIM card. For 1.8V USIM:
Vmax=1.9V Vmin=1.7V Either 1.8V or 3V is supported by the module automatically. EC25-A_User_Manual Confidential / Released 17 / 7 0 LTE Module EC25-A User Manual For 3.0V USIM:
Vmax=3.05V Vmin=2.7V IOmax=50mA For 1.8V USIM:
VILmax=0.6V VIHmin=1.2V VOLmax=0.45V VOHmin=1.35V For 3.0V USIM:
VILmax=1.0V VIHmin=1.95V VOLmax=0.45V VOHmin=2.55V For 1.8V USIM:
VOLmax=0.45V VOHmin=1.35V For 3.0V USIM:
VOLmax=0.45V VOHmin=2.55V For 1.8V USIM:
VOLmax=0.45V VOHmin=1.35V For 3.0V USIM:
VOLmax=0.45V VOHmin=2.55V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V USIM_DATA 15 IO Data signal of USIM card. USIM_CLK 16 DO Clock signal of USIM card. USIM_RST 17 DO Reset signal of USIM card. USIM_ PRESENCE 13 DI USIM card insertion detection. UART Interface 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment RI 62 DO Ring indicator VOLmax=0.45V VOHmin=1.35V DCD 63 DO Data carrier detection. VOLmax=0.45V VOHmin=1.35V EC25-A_User_Manual Confidential / Released 18 / 7 0 LTE Module EC25-A User Manual CTS 64 DO Clear to send. RTS 65 DI Request to send. DTR 66 DI Data terminal ready, sleep mode control. TXD 67 DO Transmit data. RXD 68 DI Receive data. Debug UART Interface DBG_TXD 12 DO Transmit data. DBG_RXD 11 DI Receive data. VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment ADC Interface ADC0 45 AI ADC1 44 AI PCM Interface Pin Name Pin No. I/O Description DC Characteristics Comment General purpose analog to digital converter. General purpose analog to digital converter. Voltage range:
0.3V to VBAT_BB If unused, keep it open. Voltage range:
0.3V to VBAT_BB If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment EC25-A_User_Manual Confidential / Released 19 / 7 0 LTE Module EC25-A User Manual 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, keep it open. If unused, keep it open. If unused, keep it open. PCM_IN 24 DI PCM data input. PCM_OUT 25 DO PCM data output. PCM_SYNC 26 IO PCM data frame sync signal. PCM_CLK 27 IO PCM clock. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V I2C Interface Pin Name Pin No. I/O Description DC Characteristics Comment I2C_SCL 41 OD I2C_SDA 42 OD RF Interface I2C serial clock. Used for external codec. I2C serial data. Used for external codec. Pin Name Pin No. I/O Description DC Characteristics Comment ANT_DIV 35 AI Diversity antenna. 50ohm impedance. ANT_MAIN 49 IO Main antenna. 50ohm impedance. ANT_GNSS 47 AI GNSS antenna. 50ohm impedance. Pin Name Pin No. I/O Description DC Characteristics Comment EC25-A_User_Manual Confidential / Released 20 / 7 0 GPIO Pins LTE Module EC25-A User Manual WAKEUP_IN 1 DI Sleep mode control. W_DISABLE# 4 DI Airplane mode control. AP_READY 2 DI Application processor sleep state detection. RESERVED Pins VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open. 1.8V power domain. Pull-up by default. In low voltage level, module can enter into airplane mode. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment RESERVED Reserved. Keep these pins unconnected. 3, 18, 23, 28~34, 37~40, 43, 55, 73~84, 113~144 3.4. Operating Modes The table below briefly summarizes the various operating modes referred in the following chapters. Table 5: Overview of Operating Modes Mode Details Normal Operation Idle Talk/Data Software is active. The module has registered to the network, and it is ready to send and receive data. Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate. Minimum Functionality Mode AT+CFUN command can set the module entering into a minimum functionality mode without removing the power supply. In this case, both RF function and USIM card will be invalid. Airplane Mode AT+CFUN command or W_DISABLE# pin can set the module entering into airplane mode. In this case, RF function will be invalid. EC25-A_User_Manual Confidential / Released 21 / 7 0 LTE Module EC25-A User Manual In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally. In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied. Sleep Mode Power Down Mode 3.5. Power Saving 3.5.1. Sleep Mode 3.5.1.1. UART Application EC25 is able to reduce its current consumption to a minimum value during the sleep mode. The following section describes EC25s power saving procedure. If host communicates with module via UART interface, the following preconditions can let the module enter into the sleep mode. Execute AT command AT+QSCLK=1 to enable the sleep mode. Drive DTR to high level. The following figure shows the connection between the module and the host. Module Host RXD TXD RI DTR GND AP_READY TXD RXD EINT GPIO GPIO GND Figure 3: UART Sleep Application Driving host DTR to low level will wake up the module. When EC25 has URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details about RI behavior. AP_READY will detect the sleep state of host (can be configured to high level or low level detection). EC25-A_User_Manual Confidential / Released 22 / 7 0 LTE Module EC25-A User Manual Refer to AT command AT+QCFG=apready for details. 3.5.1.2. USB Application with USB Remote Wakeup Function If host supports USB suspend/resume and remote wakeup function, the following part will show the sleep application. There are three preconditions to let the module enter into the sleep mode. Execute AT command AT+QSCLK=1 to enable the sleep mode. Ensure the DTR is held in high level or keep it open. The hosts USB bus, which is connected with the modules USB interface, enters into suspended state. The following figure shows the connection between the module and the host. Module USB_VBUS USB_DP USB_DM AP_READY GND Host VDD USB_DP USB_DM GPIO GND Figure 4: Sleep Application with USB Remote Wakeup Sending data to EC25 through USB will wake up the module. When EC25 has URC to report, the module will send remote wake-up signals to USB BUS so as to wake up the host. 3.5.1.3. USB Application with USB Suspend/Resume and RI Function If host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host. The following part will show the sleep application. There are three preconditions to let the module enter into the sleep mode. Execute AT command AT+QSCLK=1 to enable the sleep mode. Ensure the DTR is held in high level or keep it open. The hosts USB bus, which is connected with the modules USB interface, enters into suspended EC25-A_User_Manual Confidential / Released 23 / 7 0 LTE Module EC25-A User Manual state. The following figure shows the connection between the module and the host. Module USB_VBUS USB_DP USB_DM AP_READY RI GND Host VDD USB_DP USB_DM GPIO EINT GND Figure 5: Sleep Application with RI Sending data to EC25 through USB will wake up the module. When EC25 has URC to report, RI signal will wake up the host. 3.5.1.4. USB Application without USB Suspend Function If host does not support USB suspend function, you should disconnect USB_VBUS with additional control circuit to let the module enter into sleep mode. Execute AT command AT+QSCLK=1 to enable the sleep mode. Ensure the DTR is held in high level or keep it open. Disconnect USB_VBUS. The following figure shows the connection between the module and the host. Module Host Power Switch USB_VBUS USB_DP USB_DM RI AP_READY GND GPIO VDD USB_DP USB_DM EINT GPIO GND Figure 6: Sleep Application without Suspend Function EC25-A_User_Manual Confidential / Released 24 / 7 0 LTE Module EC25-A User Manual Opening power switch to supply power to USB_VBUS will wake up the module. NOTE You should pay attention to the level match shown in dotted line between module and host. Refer to document [1] for more details about EC25 power management application. 3.5.2. Airplane Mode When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set with the following ways. Hardware:
The W_DISABLE# pin is pulled up by default; driving it to low level will let the module enter into airplane mode. Command AT+CFUN provides the choice of the functionality level <fun>=0, 1, 4. AT+CFUN=0: Minimum functionality mode; both USIM and RF function are disabled. AT+CFUN=1: Full functionality mode (by default). AT+CFUN=4: Airplane mode. RF function is disabled. Software:
NOTES 1. The W_DISABLE# control function is disabled in firmware by default. It can be enabled by AT command AT+QCFG=airplanecontrol. Refer to document [2] for details. 2. The execution of AT+CFUN command will not affect GNSS function. 3.6. Power Supply 3.6.1. Power Supply Pins EC25 provides four VBAT pins dedicated to connect with the external power supply. There are two separate voltage domains for VBAT. VBAT_RF with two pins for module RF part. VBAT_BB with two pins for module baseband part. The following table shows the VBAT pins and ground pins. EC25-A_User_Manual Confidential / Released 25 / 7 0 LTE Module EC25-A User Manual Table 6: VBAT and GND Pins Pin Name Pin No. Description Min. Typ. Max. Unit VBAT_RF 57, 58 3.3 3.8 4.3 VBAT_BB 59, 60 3.3 3.8 4.3 Power supply for module RF part. Power supply for module baseband part. Ground.
0
V V V 8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, 85~112 GND 3.6.2. Decrease Voltage Drop The power supply range of the module is from 3.3V to 4.3V. Make sure the input voltage will never drop below 3.3V. The following figure shows the voltage drop during transmitting burst in 2G network. The voltage drop will be less in 3G and 4G networks. Transmit burst Transmit burst VBAT Min.3.3V Drop Ripple Figure 7: Power Supply Limits during Transmit Burst To decrease voltage drop, a bypass capacitor of about 100F with low ESR should be used. Multi-layer ceramic chip (MLCC) capacitor can provide the best combination of low ESR. The main power supply from an external application has to be a single voltage source and expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; and the width of VBAT_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be. Three ceramic capacitors (100nF, 33pF, 10pF) are recommended to be applied to the VBAT pins. The capacitors should be placed close to the VBAT pins. In addition, in order to get a stable power source, it is suggested that you should use a zener diode of which reverse zener voltage is 5.1V and dissipation power is more than 0.5W. The following figure shows the star structure of the power supply. EC25-A_User_Manual Confidential / Released 26 / 7 0 VBAT
D1 C1 5.1V 100uF C2 C3 C4 C5 C6 C7 C8 100nF 33pF 10pF 100uF 100nF 33pF 10pF
LTE Module EC25-A User Manual VBAT_RF VBAT_BB Module Figure 8: Star Structure of the Power Supply 3.6.3. Reference Design for Power Supply The power design for the module is very important, as the performance of the module largely depends on the power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that you should use a LDO to supply power for module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as a power supply. The following figure shows a reference design for +5V input power source. The designed output for the power supply is about 3.8V and the maximum load current is 3A. MIC29302WU 2 IN N E 1 OUT 4 J D A D N G 3 5 DC_IN VBAT 51K 4.7K 470uF 100nF VBAT_EN 47K 100K 1%
47K 1%
470R 470uF 100nF Figure 9: Reference Circuit of Power Supply EC25-A_User_Manual Confidential / Released 27 / 7 0 LTE Module EC25-A User Manual 3.6.4. Monitor the Power Supply You can use the AT+CBC command to monitor the VBAT_BB voltage value. For more details, please refer to document [2]. 3.7. Turn on and off Scenarios 3.7.1. Turn on Module Using the PWRKEY The following table shows the pin definition of PWRKEY. Table 7: PWRKEY Pin Description Pin Name Pin No. Description DC Characteristics Comment PWRKEY 21 Turn on/off the module. VIHmax=2.1V VIHmin=1.3V VILmax=0.5V When EC25 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 100ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure. PWRKEY 100ms Turn on pulse 4.7K 47K Figure 10: Turn on the Module Using Driving Circuit The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. When pressing the key, electrostatic strike may generate from finger. A reference circuit is shown in the following figure. EC25-A_User_Manual Confidential / Released 28 / 7 0 LTE Module EC25-A User Manual S1 PWRKEY TVS Close to S1 Figure 11: Turn on the Module Using Keystroke The turn on scenario is illustrated in the following figure. NOTE VBAT 100ms VIH 1.3V PWRKEY VIL 0.5V RESET_N STATUS
(OD) TBD TBD TBD UART Inactive USB Inactive Active Active Figure 12: Timing of Turning on Module NOTE Make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms. EC25-A_User_Manual Confidential / Released 29 / 7 0 LTE Module EC25-A User Manual 3.7.2. Turn off Module The following procedures can be used to turn off the module:
Normal power down procedure: Turn off the module using the PWRKEY pin. Normal power down procedure: Turn off the module using command AT+QPOWD. 3.7.2.1. Turn off Module Using the PWRKEY Pin Driving the PWRKEY to a low level voltage, the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure. TBD TBD VBAT PWRKEY STATUS
(OD) Module Status RUNNING Power-down procedure OFF Figure 13: Timing of Turning off Module 3.7.2.2. Turn off Module Using AT Command It is also a safe way to use AT command AT+QPOWD to turn off the module, which is similar to turning off the module via PWRKEY Pin. Please refer to document [2] for details about the AT command of AT+QPOWD. 3.8. Reset the Module The RESET_N can be used to reset the module. You can reset the module by driving the RESET_N to a low level voltage for time between Treset_min and Treset_max. EC25-A_User_Manual Confidential / Released 30 / 7 0 LTE Module EC25-A User Manual Table 8: RESET_N Pin Description Pin Name Pin No. Description DC Characteristics Comment RESET_N 20 Reset the module. VIHmax=2.1V VIHmin=1.3V VILmax=0.5V The recommended circuit is similar to the PWRKEY control circuit. You can use an open drain/collector driver or button to control the RESET_N. RESET_N TBD Reset pulse 4.7K 47K Figure 14: Reference Circuit of RESET_N by Using Driving Circuit S2 RESET_N TVS Close to S2 Figure 15: Reference Circuit of RESET_N by Using Button The reset scenario is illustrated in the following figure. EC25-A_User_Manual Confidential / Released 31 / 7 0 LTE Module EC25-A User Manual VBAT RESET_N Module Status Treset_max Treset_min VIL 0.5V VIH 1.3V RUNNING RESETTING RUNNING Figure 16: Timing of Resetting Module NOTES PWRKEY pin failed. 1. Use the RESET_N only when turning off the module by the command AT+QPOWD and the 2. Ensure that there is no large capacitance on the PWRKEY and RESET_N pins. 3.9. USIM Card Interface The USIM card interface circuitry meets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and 3.0V USIM cards are supported. Table 9: Pin Definition of the USIM Interface Pin Name Pin No. I/O Description Comment USIM_VDD 14 PO Power supply for USIM card. Either 1.8V or 3.0V is supported by the module automatically. USIM_DATA 15 IO Data signal of USIM card. USIM_CLK 16 DO Clock signal of USIM card. USIM_RST 17 DO Reset signal of USIM card. USIM_ PRESENCE 13 DI USIM card insertion detection. USIM_GND 10 Specified ground for USIM card. EC25-A_User_Manual Confidential / Released 32 / 7 0 LTE Module EC25-A User Manual EC25 supports USIM card hot-plug via the USIM_PRESENCE pin. It supports low level and high level detections, which is disabled by default. For details, refer to document [2] about the command AT+QSIMDET. The following figure shows the reference design of the 8-pin USIM connector. VDD_EXT USIM_VDD 51K 15K Module USIM_GND USIM_VDD USIM_RST USIM_CLK USIM_PRESENCE USIM_DATA 22R 22R 22R 100nF USIM Connector VCC RST CLK GND VPP IO 33pF 33pF 33pF GND GND GND Figure 17: Reference Circuit of 8-Pin USIM Connector If you do not need the USIM card detection function, keep USIM_PRESENCE unconnected. The reference circuit for using a 6-pin USIM card connector is illustrated in the following figure. USIM_VDD USIM_GND USIM_VDD USIM_RST USIM_CLK USIM_DATA 15K 22R 22R 22R Module 33pF 33pF 33pF 100nF USIM Connector VCC RST CLK GND VPP IO GND GND Figure 18: Reference Circuit of 6-Pin USIM Connector In order to enhance the reliability and availability of the USIM card in your application, please follow the EC25-A_User_Manual Confidential / Released 33 / 7 0 LTE Module EC25-A User Manual criteria below in the USIM circuit design:
Keep layout of USIM card as close as possible to the module. Assure the length of trace is less than 200mm. Keep USIM card signal away from RF and VBAT alignment. Assure the ground between the module and the USIM connector short and wide. Keep the width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential. To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away with each other and shield them with surrounded ground. In order to offer good ESD protection, it is recommended to add TVS which parasitic capacitance should not be more than 50pF. The 22ohm resistors should be added in series between the module and the USIM card so as to suppress the EMI spurious transmission and enhance the ESD protection. The 33pF capacitors are used for filtering interference of GSM900. Please note that the USIM peripheral circuit should be close to the USIM connector. The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the USIM connector. 3.10. USB Interface EC25 contains one integrated Universal Serial Bus (USB) transceiver which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command, data transmission, GNSS NMEA sentences output, software debug and firmware upgrade. The following table shows the pin definition of USB interface. Table 10: USB Pin Description Pin Name Pin No. I/O Description Comment USB_DP 69 USB differential data bus (positive). USB_DM 70 USB differential data bus (minus). USB_VBUS 71 Used for detecting the USB connection. GND 72 Ground IO IO PI Require differential impedance of 90. Require differential impedance of 90. Typical 5.0V More details about the USB 2.0 specifications, please visit http://www.usb.org/home. The USB interface is recommended to be reserved for firmware upgrade in your design. The following figure shows the reference circuit of USB interface. EC25-A_User_Manual Confidential / Released 34 / 7 0 LTE Module EC25-A User Manual Minimize this stub Test Points Module VDD USB_VBUS USB_DM USB_DP GND R3 R4 R1 R2 NM_0R NM_0R 0R 0R Close to Module ESD Array MCU USB_DM USB_DP GND Figure 19: Reference Circuit of USB Application In order to meet USB data line signal integrity, components R1, R2, R3 and R4 must be placed close to the module, and then these resistors should be placed close to each other. The extra stubs of trace must be as short as possible. In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply with the following principles. It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90ohm. Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides. Pay attention to the influence of junction capacitance of ESD component on USB data lines. Typically, the capacitance value should be less than 2pF. Keep the ESD components as close as possible to the USB connector. NOTE EC25 module can only be used as a slave device. EC25-A_User_Manual Confidential / Released 35 / 7 0 LTE Module EC25-A User Manual 3.11. UART Interface The module provides two UART interfaces: main UART interface and debug UART interface. The following shows the different features. Main UART interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600bps baud rate, and the default is 115200bps. This interface can be used for data transmission and AT communication. Debug UART interface supports 115200bps baud rate. It can be used for Linux console and log output. The following tables show the pin definition. Table 11: Pin Definition of the Main UART Interface Pin Name Pin No. I/O Description Comment RI DCD CTS RTS DTR TXD RXD 62 63 64 65 66 67 68 Ring indicator 1.8V power domain Data carrier detection 1.8V power domain Clear to send 1.8V power domain Request to send 1.8V power domain Sleep mode control 1.8V power domain Transmit data 1.8V power domain Receive data 1.8V power domain Table 12: Pin Definition of the Debug UART Interface Pin Name Pin No. I/O Description Comment DBG_TXD DBG_RXD 12 11 Transmit data 1.8V power domain Receive data 1.8V power domain The logic levels are described in the following table. DO DO DO DI DI DO DI DO DI EC25-A_User_Manual Confidential / Released 36 / 7 0 LTE Module EC25-A User Manual Table 13: Logic Levels of Digital I/O Parameter VIL VIH VOL VOH Min.
-0.3 1.2 0 1.35 Max. 0.6 2.0 0.45 1.8 Unit V V V V The module provides 1.8V UART interface. A level translator should be used if your application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instrument is recommended. The following figure shows the reference design. VDD_EXT VCCA 0.1uF 0.1uF VDD_MCU RI DCD CTS RTS DTR TXD RXD Translator VCCB GND B1 B2 B3 B4 B5 B6 B7 B8 OE A1 A2 A3 A4 A5 A6 A7 A8 51K 51K Figure 20: Reference Circuit with Translator Chip RI_MCU DCD_MCU CTS_MCU RTS_MCU DTR_MCU TXD_MCU RXD_MCU Please visit http://www.ti.com for more information. Another example with transistor translation circuit is shown as below. The circuit of dotted line can refer to the circuit of solid line. Please pay attention to the direction of connection. Input dotted line of the module should refer to input solid line of the module. Output dotted line of the module should refer to output solid line of the module. EC25-A_User_Manual Confidential / Released 37 / 7 0 LTE Module EC25-A User Manual VDD_EXT VDD_EXT 4.7K 1nF MCU/ARM 10K Module 10K 1nF VCC_MCU 4.7K VDD_EXT
/TXD
/RXD
/RTS
/CTS GPIO EINT GPIO GND RXD TXD RTS CTS DTR RI DCD GND Figure 21: Reference Circuit with Transistor Circuit NOTE Transistor circuit solution is not suitable for high baud rates exceeding 460Kbps. 3.12. PCM and I2C Interface EC25 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes:
Primary mode (short sync, works as both master and slave) Auxiliary mode (long sync, works as master only) In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge; the PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports 128, 256, 512, 1024 and 2048kHz for different speech codecs. In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge; while the PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only. EC25 supports 8-bit A-law and -law, and also 16-bit linear data formats. The following figures show the primary modes timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well as auxiliary modes timing relationship with 8kHz PCM_SYNC and 128kHz PCM_CLK. EC25-A_User_Manual Confidential / Released 38 / 7 0 LTE Module EC25-A User Manual 125us PCM_CLK 1 2 255 256 PCM_SYNC PCM_OUT PCM_IN MSB LSB MSB MSB LSB MSB Figure 22: Primary Mode Timing 125us PCM_CLK 1 2 15 16 PCM_SYNC PCM_OUT PCM_IN MSB MSB LSB LSB Figure 23: Auxiliary Mode Timing The following table shows the pin definition of PCM and I2C interface which can be applied on audio codec design. Table 14: Pin Definition of PCM and I2C Interface Pin Name Pin No. I/O Description Comment PCM_IN 24 DI PCM data input 1.8V power domain EC25-A_User_Manual Confidential / Released 39 / 7 0 LTE Module EC25-A User Manual IO IO OD OD PCM_OUT 25 DO PCM data output 1.8V power domain PCM_SYNC 26 PCM data frame sync signal 1.8V power domain PCM_CLK I2C_SCL I2C_SDA 27 41 42 PCM data bit clock 1.8V power domain I2C serial clock Require external pull-up to 1.8V I2C serial data Require external pull-up to 1.8V Clock and mode can be configured by AT command, and the default configuration is master mode using short sync data format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. Refer to document [2] about the command AT+QDAI for details. The following figure shows the reference design of PCM interface with external codec IC. PCM_CLK PCM_SYNC PCM_OUT PCM_IN I2C_SCL I2C_SDA MICBIAS INP INN LOUTP LOUTN BCLK LRCK DAC ADC SCL SDA Module K 7
. 4 K 7
. 4 1.8V Codec Figure 24: Reference Circuit of PCM Application with Audio Codec S A B I 1. It is recommended to reserve RC (R=22ohm, C=22pF) circuit on the PCM lines, especially for 2. EC25 works as a master device pertaining to I2C interface. PCM_CLK. EC25-A_User_Manual Confidential / Released 40 / 7 0 NOTES LTE Module EC25-A User Manual 3.13. ADC Function The module provides two analog-to-digital converters (ADC). Using AT command AT+QADC=0 can read the voltage value on ADC0 pin. Using AT command AT+QADC=1 can read the voltage value on ADC1 pin. For more details of these AT commands, please refer to document [2]. In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground. Table 15: Pin Definition of the ADC Pin Name Pin No. Description ADC0 ADC1 45 44 General purpose analog to digital converter General purpose analog to digital converter The following table describes the characteristic of the ADC function. Parameter Min. Typ. Max. Unit Table 16: Characteristic of the ADC ADC0 Voltage Range ADC1 Voltage Range ADC Resolution 0.3 0.3 VBAT_BB VBAT_BB V V bits 15 3.14. Network Status Indication The network indication pins can be used to drive a network status indicator LED. The module provides two pins which are NET_MODE and NET_STATUS. The following tables describe pin definition and logic level changes in different network status. Table 17: Pin Definition of Network Indicator Pin Name Pin No. I/O Description Comment NET_MODE 5 DO Indicate the module network registration 1.8V power domain EC25-A_User_Manual Confidential / Released 41 / 7 0 LTE Module EC25-A User Manual mode. NET_STATUS 6 DO Indicate the module network activity status. 1.8V power domain Table 18: Working State of the Network Indicator Pin Name Status Description NET_MODE Always High Always Low Registered in LTE network Others Flicker slowly (200ms High/1800ms Low) Network searching NET_STATUS Flicker slowly (1800ms High/200ms Low) Idle Flicker quickly (125ms High/125ms Low) Data transfer is ongoing Always High Voice calling A reference circuit is shown in the following figure. Module Network Indicator 4.7K VBAT 2.2K 47K Figure 25: Reference Circuit of the Network Indicator 3.15. STATUS The STATUS pin is an open drain output for indicating the modules operation status. You can connect it to a GPIO of DTE with pulled up, or as LED indication circuit as below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state. EC25-A_User_Manual Confidential / Released 42 / 7 0 LTE Module EC25-A User Manual Table 19: Pin Definition of STATUS Pin Name Pin No. I/O Description Comment STATUS 61 OD Indicate the module operation status Require external pull-up The following figure shows different design circuit of STATUS, you can choose either one according to your application demands. VDD_MCU 10K STATUS MCU_GPIO STATUS Module Module Figure 26: Reference Circuit of the STATUS VBAT 2.2K 3.16. Behavior of the RI You can use command AT+QCFG=risignaltype,physical to configure RI behavior. No matter which port URC is presented on, URC will trigger the behavior on RI pin. NOTE URC can be output from UART port, USB AT port and USB modem port by command AT+QURCCFG. The default port is USB AT port. In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below. EC25-A_User_Manual Confidential / Released 43 / 7 0 LTE Module EC25-A User Manual Table 20: Behavior of the RI State Idle URC Response RI keeps high level RI outputs 120ms low pulse when new URC returns The RI behavior can be changed by command AT+QCFG=urc/ri/ring. Refer to document [2] for details. EC25-A_User_Manual Confidential / Released 44 / 7 0 LTE Module EC25-A User Manual 4 GNSS Receiver 4.1. General Description EC25 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS). EC25 supports standard NMEA-0183 protocol, and outputs NMEA sentences with 1Hz via USB interface by default. By default, EC25 GNSS engine is switched off. It has to be switched on with AT command. For more details about GNSS engine technology and configurations, please refer to document [3]. 4.2. GNSS Performance The following table shows EC25 GNSS performance. Table 21: GNSS Performance Parameter Description Conditions Cold start Autonomous Reacquisition Autonomous Tracking Autonomous Cold start
@open sky Warm start
@open sky Autonomous XTRA enabled Autonomous XTRA enabled Typ. TBD TBD TBD TBD TBD TBD TBD Unit dBm dBm dBm s s s s EC25-A_User_Manual Confidential / Released 45 / 7 0 Sensitivity
(GNSS) TTFF
(GNSS) LTE Module EC25-A User Manual Hot start
@open sky CEP-50 Autonomous XTRA enabled Autonomous
@open sky TBD TBD TBD s s m Accuracy
(GNSS) NOTES 1. Tracking sensitivity: the lowest GPS signal value at the antenna port for which the module can keep on positioning for 3 minutes. 2. Reacquisition sensitivity: the lowest GPS signal value at the antenna port for which the module can fix position again within 3 minutes after loss of lock. 3. Cold start sensitivity: the lowest GPS signal value at the antenna port for which the module fixes position within 3 minutes after executing cold start command. 4.3. Layout Guideline The following layout guideline should be taken into account in your design. Maximize the distance between the GNSS antenna, the main antenna and the Rx-diversity antenna. Digital circuits such as USIM card, USB interface, Camera module, Display connector and SD card should be kept away from the antenna. Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection. Keep 50ohm characteristic impedance for the ANT_GNSS trace. Refer to Chapter 5 for GNSS reference design and antenna consideration. EC25-A_User_Manual Confidential / Released 46 / 7 0 LTE Module EC25-A User Manual 5 Antenna Interface EC25 antenna interface includes a main antenna, an Rx-diversity antenna which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna. The antenna interface has an impedance of 50ohm. 5.1. Main/Rx-diversity Antenna Interface 5.1.1. Pin Definition The main antenna and Rx-diversity antenna pins definition are shown below. Table 22: Pin Definition of the RF Antenna Pin Name Pin No. I/O Description Comment ANT_MAIN ANT_DIV 49 35 IO AI Main antenna 50ohm impedance Receive diversity antenna 50ohm impedance 5.1.2. Operating Frequency Table 23: The Module Operating Frequencies 3GPP Band Transmit Receive B2 (1900) 1850 ~ 1910 1930 ~ 1990 1850 ~ 1910 1930 ~ 1990 B5 (850) 824 ~ 849 869 ~ 894 1710 ~ 1755 2110 ~ 2155 699 ~ 716 728 ~ 746 B2 B4 B12 Unit MHz MHz MHz MHz MHz EC25-A_User_Manual Confidential / Released 47 / 7 0 LTE Module EC25-A User Manual 5.1.3. Reference Design The reference design of ANT_MAIN and ANT_DIV antenna is shown as below. It should reserve a -type matching circuit for better RF performance. The capacitors are not mounted by default. Main antenna Diversity antenna Module ANT_MAIN R1 0R ANT_DIV R2 0R C1 NM C3 NM C2 NM C4 NM Figure 27: Reference Circuit of Antenna Interface NOTES receiving sensitivity. receive diversity. 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the 2. ANT_DIV function is enabled by default. Use the AT command AT+QCFG="diversity",0 can disable 5.2. GNSS Antenna Interface The following tables show the GNSS antenna pin definition and frequency specification. EC25-A_User_Manual Confidential / Released 48 / 7 0 LTE Module EC25-A User Manual Table 24: Pin Definition of GNSS Antenna Pin Name Pin No. I/O Description Comment ANT_GNSS 47 AI GNSS antenna 50ohm impedance Table 25: GNSS Frequency Type Frequency GPS/Galileo/QZSS 1575.42 1.023 GLONASS 1597.5 ~ 1605.8 BeiDou 1561.098 2.046 The reference design of GNSS antenna is shown as below. Unit MHz MHz MHz VDD GNSS Antenna 10R 0.1uF Module ANT_GNSS 47nH 100pF NM NM Figure 28: Reference Circuit of GNSS Antenna NOTES 1. You can choose an external LDO to supply power according to the active antenna. If you design the module with passive antenna, the VDD circuit is not needed. 2. EC25-A_User_Manual Confidential / Released 49 / 7 0 LTE Module EC25-A User Manual The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna. 5.3. Antenna Installation 5.3.1. Antenna Requirement Table 26: Antenna Requirements Type Requirements GNSS GSM/WCDMA/LTE Frequency range: 1561 - 1615MHz Polarization: RHCP or linear VSWR: < 2 (Typ.) Passive antenna gain: > 0dBi Active antenna noise figure: < 1.5dB Active antenna gain: > -2dBi Active antenna embedded LNA gain: 20dB (Typ.) Active antenna total gain: > 18dBi (Typ.) VSWR: 2 Gain (dBi): 1 Max Input Power (W): 50 Input Impedance (ohm): 50 Polarization Type: Vertical Cable Insertion Loss: < 1dB
(GSM900, WCDMA B5/B8,LTE B5/B8/B12/B13/B20/B28-A/B28-B) Cable Insertion Loss: < 1.5dB
(GSM1800, WCDMA B1/B2/B4/,LTE B1/B2/B3/B4) Cable insertion loss < 2dB
(LTE B7/B38/B40/B41) 5.3.2. Install the Antenna with RF Connector The following figure is the antenna installation with RF connector provided by HIROSE. The recommended RF connector is UF.L-R-SMT. EC25-A_User_Manual Confidential / Released 50 / 7 0 LTE Module EC25-A User Manual Figure 29: Dimensions of the UF.L-R-SMT Connector (Unit: mm) You can use U.FL-LP serial connector listed in the following figure to match the UF.L-R-SMT. Figure 30: Mechanicals of UF.L-LP Connectors EC25-A_User_Manual Confidential / Released 51 / 7 0 The following figure describes the space factor of mated connector. LTE Module EC25-A User Manual Figure 31: Space Factor of Mated Connector (Unit: mm) For more details, please visit http://www.hirose.com. EC25-A_User_Manual Confidential / Released 52 / 7 0 LTE Module EC25-A User Manual 6 Electrical, Reliability and Radio Characteristics 6.1. Absolute Maximum Ratings Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table. Table 27: Absolute Maximum Ratings Parameter VBAT_RF/VBAT_BB USB_VBUS Peak Current of VBAT_BB Peak Current of VBAT_RF Voltage at ADC0 Voltage at ADC1 Min.
-0.3
-0.3 0 0 0 0 Voltage at Digital Pins
-0.3 6.2. Power Supply Ratings Table 28: The Module Power Supply Ratings Max. Unit 4.7 5.5 0.8 1.8 2.3 VBAT_BB VBAT_BB V V A A V V V Parameter Description Conditions Min. Typ. Max. Unit VBAT VBAT_BB and Voltage must stay within the 3.3 3.8 4.3 V EC25-A_User_Manual Confidential / Released 53 / 7 0 LTE Module EC25-A User Manual 400 mV Parameter Description Conditions Min. Typ. Max. Unit VBAT_RF min/max values, including voltage drop, ripple and spikes. Voltage drop during transmitting burst Maximum power control level on GSM900. Peak supply current
(during transmission slot) Maximum power control level on GSM900. IVBAT 1.8 2.0 A USB_VBUS USB detection 3.0 5.0 5.25 V 6.3. Operating Temperature The operating temperature is listed in the following table. Table 29: Operating Temperature Parameter Normal Temperature Min.
-35 Typ. 25 Restricted Operation
-40 ~ -35 Storage Temperature
-45 6.4. Current Consumption This information will be added in future version of this document. 6.5. RF Output Power The following table shows the RF output power of EC25 module. Max. 75 75 ~ 85 90 Unit C C C EC25-A_User_Manual Confidential / Released 54 / 7 0 LTE Module EC25-A User Manual Table 30: Conducted RF Output Power Frequency Max. Min. WCDMA B2/B5 22.5dBm1dB LTE FDD B2/B4/B12 22dBm2dB
<-50dBm
<-44dBm Directives and Standards The EC25-A module is designed to comply with the FCC statements. FCC ID: 2AVFA-CANGO-4G-
EC21, The Host system using EC25-A, should have label indicated "Contains FCC ID:
XMR201605EC25A". FCC Radiation Exposure Statement This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body as well as kept minimum 20cm from radio antenna depending on the Mobile status of this module usage. This module should NOT be installed and operating simultaneously with other radio. The manual of the host system, which uses EC25-A must include RF exposure warning statement to advice user should keep minimum 20cm from the radio antenna of EC25-A module depending on the Mobile status. Note: If a portable device (such as PDA) uses EC25-A module, the device needs to do permissive change and SAR testing. EC25-A_User_Manual Confidential / Released 55 / 7 0 LTE Module EC25-A User Manual Table 31: Electrostatics Discharge Characteristics Tested Points Contact Discharge Air Discharge Unit VBAT, GND All Antenna Interfaces Other Interfaces 5 4 0.5 10 8 1 kV kV kV EC25-A_User_Manual Confidential / Released 56 / 7 0 LTE Module EC25-A User Manual 7 Mechanical Dimensions This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm. 7.1. Mechanical Dimensions of the Module
(32+/-0.15) 2.4+/-0.2
) 5 1
. 0
9 2
0.8 Figure 32: Module Top and Side Dimensions EC25-A_User_Manual Confidential / Released 57 / 7 0 LTE Module EC25-A User Manual 32.0 0
. 9 2 Figure 33: Module Bottom Dimensions (Bottom View) EC25-A_User_Manual Confidential / Released 58 / 7 0 7.2. Footprint of Recommendation LTE Module EC25-A User Manual Keepout area 0
. 9 2 32.0 Figure 34: Recommended Footprint (Top View) NOTES 1. Pads 73~84 should not be designed. 2. In order to maintain the module, keep about 3mm between the module and other components in the host PCB. EC25-A_User_Manual Confidential / Released 59 / 7 0 LTE Module EC25-A User Manual 7.3. Top View of the Module Figure 35: Top View of the Module 7.4. Bottom View of the Module Figure 36: Bottom View of the Module EC25-A_User_Manual Confidential / Released 60 / 7 0 LTE Module EC25-A User Manual 8 Storage and Manufacturing 8.1. Storage EC25 is stored in a vacuum-sealed bag. The restrictions of storage condition are shown as below. 1. Shelf life in sealed bag is 12 months at < 40C/90%RH. 2. After this bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
Mounted within 72 hours at factory conditions of 30C/60%RH. Stored at <10% RH. 3. Devices require bake before mounting, if:
Humidity indicator card is >10% when ambient temperature is 23C5C. Mounted for more than 72 hours at factory conditions of 30C/60% RH. 4. If baking is required, devices may be baked for 48 hours at 125C5C. NOTE As plastic container cannot be subjected to high temperature, the module needs to be taken out from the container for high temperature (125C) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033 for baking procedure. 8.2. Manufacturing and Welding The squeegee should push the paste on the surface of stencil, so as to make the paste fill the stencil openings and penetrate to the PCB. The force on the squeegee should be adjusted so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil at the hole of the module pads should be 0.18mm. For details, please refer to document [4]. It is suggested that the peak reflow temperature is 235 ~ 245C (for SnAg3.0Cu0.5 alloy). The absolute max reflow temperature is 260C. To avoid damage to the module when it is repeatedly heated, it is EC25-A_User_Manual Confidential / Released 61 / 7 0 suggested that the module should be mounted after the first panel has been reflowed. The following picture is the actual diagram which we have operated. LTE Module EC25-A User Manual C 250 217 200 t e r u a r e p m e T 150 100 50 Preheat Heating Cooling Liquids Temperature 200 C 40s~60s 160 C 70s~120s Between 1~3 C/s 0 50 100 150 200 250 300 s Time Figure 37: Liquids Temperature 8.3. Packaging EC25 is packaged in tap and reel carriers. One reel is 11.53m length and contains 250pcs modules. The figure below shows the package details, measured in mm. EC25-A_User_Manual Confidential / Released 62 / 7 0 44.000.1 2.000.1 4.000.1 0.1 1.5 0 0.35 0.05 1
. 0 5 7
. 1 5 1
. 0 0 2
. 0 2 3
. 0 0 0
. 4 4 32.50.15 33.50.15 4.20.15 3.10.15 32.5 0.15 33.5 0.15 LTE Module EC25-A User Manual 5 1
. 0 3
. 9 2 5 1
. 0 3
. 0 3 5 1
. 0 3
. 0 3 Cover tape Direction of feed 48.5 0 0 1 13 44.5+0.20
-0.00 Figure 38: Carrier Tape EC25-A_User_Manual Confidential / Released 63 / 7 0 LTE Module EC25-A User Manual 9 Appendix A Reference Table 32: Related Documents SN Document Name Remark Quectel_EC25_Power_Management_Application_ Note EC25 Power Management Application Note Quectel_EC25_AT_Commands_Manual EC25 AT Commands Manual Quectel_EC25_GNSS_AT_Commands_Manual EC25 GNSS AT Commands Manual Quectel_Module_Secondary_SMT_User_Guide Module Secondary SMT User Guide
[1]
[2]
[3]
[4]
AMR bps CHAP CS CSD CTS DL DTR DTX Table 33: Terms and Abbreviations Abbreviation Description Challenge Handshake Authentication Protocol Adaptive Multi-rate Bits Per Second Coding Scheme Circuit Switched Data Clear To Send Downlink Data Terminal Ready Discontinuous Transmission DC-HSPA+
Dual-carrier High Speed Packet Access DFOTA Delta Firmware Upgrade Over The Air EC25-A_User_Manual Confidential / Released 64 / 7 0 LTE Module EC25-A User Manual GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System EFR ESD FDD FR GMSK GNSS GPS GSM HR HSPA HSDPA HSUPA I/O Inorm LED LNA LTE MIMO MO MS MT PAP PCB PDU Enhanced Full Rate Electrostatic Discharge Frequency Division Duplex Full Rate Gaussian Minimum Shift Keying Global Navigation Satellite System Global Positioning System Global System for Mobile Communications Half Rate High Speed Packet Access High Speed Downlink Packet Access High Speed Uplink Packet Access Input/Output Normal Current Light Emitting Diode Low Noise Amplifier Long Term Evolution Multiple Input Multiple Output Mobile Originated Mobile Station (GSM engine) Mobile Terminated Password Authentication Protocol Printed Circuit Board Protocol Data Unit EC25-A_User_Manual Confidential / Released 65 / 7 0 LTE Module EC25-A User Manual TDMA Time Division Multiple Access TD-SCDMA Time Division-Synchronous Code Division Multiple Access PPP QAM QPSK RF RHCP Rx SIM SMS TDD TX UL UMTS URC USIM Vmax Vnorm Vmin VIHmax VIHmin VILmax VILmin VImax VImin Point-to-Point Protocol Quadrature Amplitude Modulation Quadrature Phase Shift Keying Radio Frequency Right Hand Circularly Polarized Receive Subscriber Identification Module Short Message Service Time Division Duplexing Transmitting Direction Uplink Universal Mobile Telecommunications System Unsolicited Result Code Universal Subscriber Identity Module Maximum Voltage Value Normal Voltage Value Minimum Voltage Value Maximum Input High Level Voltage Value Minimum Input High Level Voltage Value Maximum Input Low Level Voltage Value Minimum Input Low Level Voltage Value Absolute Maximum Input Voltage Value Absolute Minimum Input Voltage Value EC25-A_User_Manual Confidential / Released 66 / 7 0 LTE Module EC25-A User Manual VOHmax VOHmin VOLmax VOLmin VSWR Maximum Output High Level Voltage Value Minimum Output High Level Voltage Value Maximum Output Low Level Voltage Value Minimum Output Low Level Voltage Value Voltage Standing Wave Ratio WCDMA Wideband Code Division Multiple Access EC25-A_User_Manual Confidential / Released 67 / 7 0 LTE Module EC25-A User Manual 10 Appendix B GPRS Coding Scheme Table 34: Description of Different Coding Schemes Radio Block excl.USF and BCS 181 Scheme Code Rate USF Pre-coded USF BCS Tail Coded Bits Punctured Bits Data Rate Kb/s CS-1 CS-2 CS-3 CS-4 1/2 2/3 3/4 3 3 40 4 456 0 9.05 3 6 268 16 4 588 132 13.4 3 6 312 16 4 676 220 15.6 1 3 12 428 16 456
21.4 EC25-A_User_Manual Confidential / Released 68 / 7 0 LTE Module EC25-A User Manual 11 Appendix C GPRS Multi-slot Class Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependant, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table. Table 35: GPRS Multi-slot Classes Multislot Class Downlink Slots Uplink Slots Active Slots 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 3 2 3 3 4 3 4 4 4 1 1 2 1 2 2 3 1 2 2 3 4 2 3 3 4 4 4 4 5 5 5 5 5 EC25-A_User_Manual Confidential / Released 69 / 7 0 LTE Module Sires EC25 Hardware Design 12 Appendix D EDGE Modulation and Coding Scheme Table 36: EDGE Modulation and Coding Scheme Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot 4 Timeslot CS-1:
CS-2:
CS-3:
CS-4:
MCS-1 MCS-2 MCS-3 MCS-4 MCS-5 MCS-6 MCS-7 MCS-8 MCS-9 GMSK GMSK GMSK GMSK GMSK GMSK GMSK GMSK 8-PSK 8-PSK 8-PSK 8-PSK 8-PSK
C B A C B A B A A 9.05kbps 18.1kbps 36.2kbps 13.4kbps 26.8kbps 53.6kbps 15.6kbps 31.2kbps 62.4kbps 21.4kbps 42.8kbps 85.6kbps 8.80kbps 17.60kbps 35.20kbps 11.2kbps 22.4kbps 44.8kbps 14.8kbps 29.6kbps 59.2kbps 17.6kbps 35.2kbps 70.4kbps 22.4kbps 44.8kbps 89.6kbps 29.6kbps 59.2kbps 118.4kbps 44.8kbps 89.6kbps 179.2kbps 54.4kbps 108.8kbps 217.6kbps 59.2kbps 118.4kbps 236.8kbps EC25_Hardware_Design Confidential / Released 70 /
70
1 2 3 | Modular Integration Instructions | Users Manual | 4.54 MiB | May 24 2022 |
EC21 Hardware Design LTE Module Series Rev. EC21_Hardware_Design_V1.5 Date: 2017-03-05 Status: Released www.quectel.com LTE Module Series EC21 Hardware Design Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd. 7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@quectel.com Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm Or Email to: support@quectel.com GENERAL NOTES QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved. EC21_Hardware_Design 1 / 105 LTE Module Series EC21 Hardware Design About the Document History Revision Date Author Description 1.0 2016-04-15 Yeoman CHEN Initial 1.1 2016-09-22 Yeoman CHEN/
Frank WANG/
Lyndon LIU 1. Updated frequency bands in Table 1. 2. Updated transmitting power, supported maximum baud rate of main UART, supported internet protocols, supported USB drivers of USB interface, and temperature range in Table 2. 3. Updated timing of turning on module in Figure 12. 4. Updated timing of turning off module in Figure 13. 5. Updated timing of resetting module in Figure 16. 6. Updated main UART supports baud rate in Chapter 7. Added notes for ADC interface in Chapter 3.13. 8. Updated GNSS Performance in Table 21. 9. Updated operating frequencies of module in Table 3.11. 23. 10. Added current consumption in Chapter 6.4. 11. Updated RF output power in Chapter 6.5. 12. Added RF receiving sensitivity in Chapter 6.6. 1. Updated frequency bands in Table 1. 2. Updated function diagram in Figure 1. 3. Updated pin assignment (top view) in Figure 2. 4. Added BT interface in Chapter 3.18.2. 5. Updated reference circuit of wireless connectivity interfaces with FC20 module in Figure 29. 6. Updated GNSS performance in Table 24. 7. Updated module operating frequencies in Table 26. 8. Added EC21-AUV current consumption in Table 38. 9. Updated EC21-A conducted RF receiving sensitivity of in Table 42. 10. Added EC21-J conducted RF receiving sensitivity in 1.3 2017-01-24 Lyndon LIU/
Rex WANG EC21_Hardware_Design 2 / 105 1.4 2017-03-01 Geely YANG Deleted the LTE band TDD B41 of EC21-CT LTE Module Series EC21 Hardware Design Table 48. 1. Updated functional diagram in Figure 1. 2. Updated frequency bands in Table 1. 3. Updated UMTS and GSM features in Table 2. 4. Updated description of pin 40/136/137/138. 5. Updated PWRKEY pulled down time to 500ms in chapter 3.7.1 and reference circuit in Figure 10. 6. Updated reference circuit of (U)SIM interface in Figure 17&18. 7. Updated reference circuit of USB interface in Figure 8. Updated PCM mode in Chapter 3.12. 9. Updated USB_BOOT reference circuit in Chapter 19. 3.20. in Chapter 6.5. 13. Updated EC21 series modules conducted RF receiving sensitivity in Chapter 6.6. 14. Added thermal consideration description in Chapter dimension tolerance information in 16. Added storage temperature range in Table 2 and 6.8. 15. Updated Chapter 7. Chapter 6.3. 17. Updated RF output power in Table 42. 18. Updated antenna requirements in Table 29. 19. Updated GPRS multi-slot classes in Table 55. 20. Updated storage information in Chapter 8.1 1.5 2018-03-05 Annice ZHANG/
Lyndon LIU/
Frank WANG 10. Added SD card interface in Chapter 3.13. 11. Updated module operating frequencies in Table 26. 12. Updated EC21 series modules current consumption EC21_Hardware_Design 3 / 105 LTE Module Series EC21 Hardware Design Contents About the Document.................................................................................................................................................2 Contents....................................................................................................................................................................... 4 Table Index.................................................................................................................................................................. 7 Figure Index.................................................................................................................................................................9 1 Introduction...........................................................................................................................................................11 1.1. Safety Information......................................................................................................................................12 2 Product Concept..................................................................................................................................................13 2.1. General Description...................................................................................................................................13 2.2. Key Features.............................................................................................................................................. 14 2.3. Functional Diagram....................................................................................................................................17 2.4. Evaluation Board........................................................................................................................................17 3 Application Interfaces........................................................................................................................................ 18 3.1. General Description...................................................................................................................................18
.............................................................................................................................................. 3.2. Pin Description........................................................................................................................................... 19 3.3. Operating Modes........................................................................................................................................28 3.4. Power Saving..............................................................................................................................................29 3.4.1. Sleep Mode......................................................................................................................................29 3.4.1.1. UART Application................................................................................................................ 29 3.4.1.2. USB Application with USB Remote Wakeup Function................................................. 30 3.4.1.3. USB Application with USB Suspend/Resume and RI Function.................................. 31 3.4.1.4. USB Application without USB Suspend Function..........................................................31 3.4.2. Airplane Mode................................................................................................................................. 32 3.5. Power Supply..............................................................................................................................................33 3.5.1. Power Supply Pins......................................................................................................................... 33 3.5.2. Decrease Voltage Drop................................................................................................................. 33 3.5.3. Reference Design for Power Supply...........................................................................................34 3.5.4. Monitor the Power Supply.............................................................................................................35 3.6. Turn on and off Scenarios........................................................................................................................ 35 3.6.1. Turn on Module Using the PWRKEY.......................................................................................... 35 3.6.2. Turn off Module...............................................................................................................................37 3.6.2.1. Turn off Module Using the PWRKEY Pin........................................................................37 3.6.2.2. Turn off Module Using AT Command...............................................................................38 3.7. Reset the Module.......................................................................................................................................38 3.8. (U)SIM Interface.........................................................................................................................................40 3.9. USB Interface............................................................................................................................................. 42 3.10. UART Interfaces.......................................................................................................................................44 3.11. PCM and I2C Interfaces......................................................................................................................... 46 EC21_Hardware_Design 4 / 105 LTE Module Series EC21 Hardware Design 3.12. SD Card Interface....................................................................................................................................48 3.13. ADC Interfaces.........................................................................................................................................51 3.14. Network Status Indication...................................................................................................................... 51 3.15. STATUS.....................................................................................................................................................53 3.16. Behaviors of RI.........................................................................................................................................53 3.17. SGMII Interface........................................................................................................................................54 4 GNSS Receiver.....................................................................................................................................................58 4.1. General Description...................................................................................................................................58 4.2. GNSS Performance...................................................................................................................................58 4.3. Layout Guidelines...................................................................................................................................... 59 5 Antenna Interfaces.............................................................................................................................................. 60 5.1. Main/Rx-diversity Antenna Interfaces.....................................................................................................60 5.1.1. Pin Definition................................................................................................................................... 60 5.1.2. Operating Frequency..................................................................................................................... 60 5.1.3. Reference Design of RF Antenna Interface............................................................................... 61 5.1.4. Reference Design of RF Layout...................................................................................................62 5.2. GNSS Antenna Interface.......................................................................................................................... 64 5.3. Antenna Installation................................................................................................................................... 65 5.3.1. Antenna Requirement....................................................................................................................65 5.3.2. Recommended RF Connector for Antenna Installation........................................................... 66 6 Electrical, Reliability and Radio Characteristics........................................................................................ 68 6.1. Absolute Maximum Ratings..................................................................................................................... 68 6.2. Power Supply Ratings...............................................................................................................................69 6.3. Operation and Storage Temperatures....................................................................................................69 6.4. Current Consumption................................................................................................................................ 70 6.5. RF Output Power....................................................................................................................................... 76 6.6. RF Receiving Sensitivity...........................................................................................................................77 6.7. Electrostatic Discharge............................................................................................................................. 81 6.8. Thermal Consideration..............................................................................................................................81 7 Mechanical Dimensions.....................................................................................................................................84 7.1. Mechanical Dimensions of the Module.................................................................................................. 84 7.2. Recommended Footprint.......................................................................................................................... 86 7.3. Design Effect Drawings of the Module................................................................................................... 87 8 Storage, Manufacturing and Packaging........................................................................................................88 8.1. Storage........................................................................................................................................................ 88 8.2. Manufacturing and Soldering...................................................................................................................89 8.3. Packaging....................................................................................................................................................90 9 Appendix A References..................................................................................................................................... 91 10 Appendix B GPRS Coding Schemes...........................................................................................................95 11 Appendix C GPRS Multi-slot Classes......................................................................................................... 96 EC21_Hardware_Design 5 / 105 12 Appendix D EDGE Modulation and Coding Schemes............................................................................98 LTE Module Series EC21 Hardware Design EC21_Hardware_Design 6 / 105 LTE Module Series EC21 Hardware Design Table Index TABLE 1: FREQUENCY BANDS OF EC21 SERIES MODULE................................................................................ 13 TABLE 2: KEY FEATURES OF EC21 MODULE..........................................................................................................14 TABLE 3: I/O PARAMETERS DEFINITION................................................................................................................... 19 TABLE 4: PIN DESCRIPTION......................................................................................................................................... 19 TABLE 5: OVERVIEW OF OPERATING MODES........................................................................................................28 TABLE 6: VBAT AND GND PINS.................................................................................................................................... 33 TABLE 7: PIN DEFINITION OF PWRKEY.....................................................................................................................35 TABLE 8: PIN DEFINITION OF RESET_N................................................................................................................... 38 TABLE 9: PIN DEFINITION OF THE (U)SIM INTERFACE......................................................................................... 40 TABLE 10: PIN DESCRIPTION OF USB INTERFACE............................................................................................... 42 TABLE 11: PIN DEFINITION OF MAIN UART INTERFACE....................................................................................... 44 TABLE 12: PIN DEFINITION OF DEBUG UART INTERFACE.................................................................................. 44 TABLE 13: LOGIC LEVELS OF DIGITAL I/O................................................................................................................ 45 TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES................................................................................ 47 TABLE 15: PIN DEFINITION OF SD CARD INTERFACE.......................................................................................... 49 TABLE 16: PIN DEFINITION OF ADC INTERFACES................................................................................................. 51 TABLE 17: CHARACTERISTIC OF ADC....................................................................................................................... 51 TABLE 18: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR.......................... 52 TABLE 19: WORKING STATE OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR........................52 TABLE 20: PIN DEFINITION OF STATUS.....................................................................................................................53 TABLE 21: BEHAVIOR OF RI......................................................................................................................................... 54 TABLE 22: PIN DEFINITION OF THE SGMII INTERFACE........................................................................................ 54 TABLE 23: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES....................... TABLE 24: PIN DEFINITION OF USB_BOOT INTERFACE.......................................................................................56 TABLE 25: GNSS PERFORMANCE.............................................................................................................................. 58 TABLE 26: PIN DEFINITION OF RF ANTENNAS........................................................................................................ 60 TABLE 27: MODULE OPERATING FREQUENCIES.................................................................................................. 60 TABLE 28: PIN DEFINITION OF GNSS ANTENNA INTERFACE..............................................................................64 TABLE 29: GNSS FREQUENCY.................................................................................................................................... 64 TABLE 30: ANTENNA REQUIREMENTS.......................................................................................................................65 TABLE 31: ABSOLUTE MAXIMUM RATINGS.............................................................................................................. 68 TABLE 32: POWER SUPPLY RATINGS....................................................................................................................... 69 TABLE 33: OPERATION AND STORAGE TEMPERATURES................................................................................... 69 TABLE 34: EC21-E CURRENT CONSUMPTION........................................................................................................ 70 TABLE 35: EC21-A CURRENT CONSUMPTION........................................................................................................ 72 TABLE 36: EC21-V CURRENT CONSUMPTION........................................................................................................ 73 TABLE 37: EC21-AUT CURRENT CONSUMPTION................................................................................................... 73 TABLE 38: EC21-AUV CURRENT CONSUMPTION...................................................................................................74 TABLE 39: EC21-J CURRENT CONSUMPTION......................................................................................................... 75 TABLE 40: EC21-KL CURRENT CONSUMPTION...................................................................................................... 76 TABLE 41: GNSS CURRENT CONSUMPTION OF EC21 SERIES MODULE....................................................... 76 EC21_Hardware_Design 7 / 105 LTE Module Series EC21 Hardware Design TABLE 42: RF OUTPUT POWER................................................................................................................................... 77 TABLE 43: EC21-E CONDUCTED RF RECEIVING SENSITIVITY........................................................................... 77 TABLE 44: EC21-A CONDUCTED RF RECEIVING SENSITIVITY........................................................................... 78 TABLE 45: EC21-V CONDUCTED RF RECEIVING SENSITIVITY........................................................................... 78 TABLE 46: EC21-AUT CONDUCTED RF RECEIVING SENSITIVITY......................................................................78 TABLE 47: EC21-KL CONDUCTED RF RECEIVING SENSITIVITY......................................................................... 79 TABLE 48: EC21-J CONDUCTED RF RECEIVING SENSITIVITY............................................................................79 TABLE 49: EC21-AUV CONDUCTED RF RECEIVING SENSITIVITY..................................................................... 79 TABLE 50: EC21-AU CONDUCTED RF RECEIVING SENSITIVITY........................................................................ 80 TABLE 51: ELECTROSTATIC DISCHARGE CHARACTERISTICS.......................................................................... 81 TABLE 52: RELATED DOCUMENTS............................................................................................................................. 91 TABLE 53: TERMS AND ABBREVIATIONS.................................................................................................................. 91 TABLE 54: DESCRIPTION OF DIFFERENT CODING SCHEMES.......................................................................... 95 TABLE 55: GPRS MULTI-SLOT CLASSES.................................................................................................................. 96 TABLE 56: EDGE MODULATION AND CODING SCHEMES................................................................................... 98 EC21_Hardware_Design 8 / 105 LTE Module Series EC21 Hardware Design Figure Index FIGURE 1: FUNCTIONAL DIAGRAM............................................................................................................................ 17 FIGURE 2: PIN ASSIGNMENT (TOP VIEW)................................................................................. FIGURE 3: SLEEP MODE APPLICATION VIA UART................................................................................................. 29 FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP........................................................... 30 FIGURE 5: SLEEP MODE APPLICATION WITH RI....................................................................................................31 FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION...................................................... 32 FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION............................................................. 33 FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY.....................................................................................34 FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY........................................................................................35 FIGURE 10: TURN ON THE MODULE BY USING DRIVING CIRCUIT.................................................................. 36 FIGURE 11: TURN ON THE MODULE BY USING BUTTON.....................................................................................36 FIGURE 12: TIMING OF TURNING ON MODULE...................................................................................................... 37 FIGURE 13: TIMING OF TURNING OFF MODULE.................................................................................................... 38 FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT............................................39 FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON............................................................. 39 FIGURE 16: TIMING OF RESETTING MODULE........................................................................................................ 40 FIGURE 17: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
..................................................................................................................................................................................... 41 FIGURE 18: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR.. 41 FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION..................................................................................43 FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP............................................................................45 FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT...................................................................... 46 FIGURE 22: PRIMARY MODE TIMING.........................................................................................................................47 FIGURE 23: AUXILIARY MODE TIMING...................................................................................................................... 47 FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC.........................................48 FIGURE 25: REFERENCE CIRCUIT OF SD CARD................................................................................................... 50 FIGURE 26: REFERENCE CIRCUIT OF THE NETWORK INDICATOR................................................................. 52 FIGURE 27: REFERENCE CIRCUITS OF STATUS....................................................................................................53 FIGURE 28: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION................................................... 55 FIGURE 29: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION................... 56 FIGURE 30: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE FIGURE 31: REFERENCE CIRCUIT OF USB_BOOT INTERFACE........................................................................ 57 FIGURE 32: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE..................................................................... 62 FIGURE 33: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB.............................................................................. 62 FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB........................................................ 63 FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GROUND).................................................................................................................................................................. 63 FIGURE 36: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GROUND).................................................................................................................................................................. 63 FIGURE 37: REFERENCE CIRCUIT OF GNSS ANTENNA...................................................................................... 65 EC21_Hardware_Design 9 / 105 LTE Module Series EC21 Hardware Design FIGURE 38: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)...................................................... 66 FIGURE 39: MECHANICALS OF U.FL-LP CONNECTORS...................................................................................... 67 FIGURE 40: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)................................................................... 67 FIGURE 41: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE).....................82 FIGURE 42: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BOTTOM OF CUSTOMERS PCB)...82 FIGURE 43: MODULE TOP AND SIDE DIMENSIONS...............................................................................................84 FIGURE 44: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW).......................................................................... 85 FIGURE 45: RECOMMENDED FOOTPRINT (TOP VIEW)........................................................................................86 FIGURE 46: TOP VIEW OF THE MODULE.................................................................................................................. 87 FIGURE 47: BOTTOM VIEW OF THE MODULE......................................................................................................... 87 FIGURE 48: REFLOW SOLDERING THERMAL PROFILE....................................................................................... 89 FIGURE 49: TAPE AND REEL SPECIFICATIONS......................................................................................................90 EC21_Hardware_Design 10 / 105 LTE Module Series EC21 Hardware Design 1 Introduction This document defines the EC21 module and describes its air interface and hardware interface which are connected with customers applications. This document can help customers quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EC21 module. Associated with application note and user guide, customers can use EC21 module to design and set up mobile applications easily. EC21_Hardware_Design 1-11 / 105 LTE Module Series EC21 Hardware Design 1.1. Safety Information The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC21 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customers failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft. Switch off your wireless device when in hospitals,clinics or other health care facilities. These requests are desinged to prevent possible interference with sensitive medical equipment. Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid (U)SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. EC21_Hardware_Design 1-12 / 105 LTE Module Series EC21 Hardware Design 2 Product Concept 2.1. General Description EC21 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive diversity. It provides data connectivity on LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA, EDGE and GPRS networks. It also provides GNSS1) and voice functionality2) for customers specific applications. EC21 contains nine variants: EC21-E, EC21-A, EC21-V, EC21-AU, EC21-AUT, EC21-AUV, EC21-J, EC21-KL and EC20-CEL. Customers can choose a dedicated type based on the region or operator. The following table shows the frequency bands of EC21 series module. Table 1: Frequency Bands of EC21 Series Module Modules2) LTE Bands UMTS Bands GSM Rx-
diversity GNSS1) EC21-E FDD: B1/B3/B5/B7/B8/B20 900/1800 EC21-A FDD: B2/B4/B12 EC21-V FDD: B4/B13 FDD: B1/B2/B3/B4/B5/B7/B8/
EC21-AU3) B28 TDD: B40 WCDMA:
B1/B2/B5/B8 850/900/
1800/1900 EC21-AUT FDD: B1/B3/B5/B7/B28 EC21-AUV FDD: B1/B3/B5/B8/B28 B1/B5/B8 WCDMA:
B1/B5/B8 WCDMA:
B2/B4/B5 N WCDMA:
B1/B5 N N N N N N N N N N Y Y Y Y Y Y Y Y N GPS, GLONASS, BeiDou/
Compass, Galileo, QZSS N N N N EC21-J FDD: B1/B3/B8/B18/B19/B26 EC21-KL FDD: B1/B3/B5/B7/B8 EC20-CEL FDD: B1/B3/B5 EC21_Hardware_Design 2-13 / 105 LTE Module Series EC21 Hardware Design NOTES 1. 2. 1) GNSS function is optional. 2) EC21 series module (EC21-E, EC21-A, EC21-V, EC21-AU, EC21-AUT, EC21-AUV, EC21-J, EC21-KL and EC20-CEL) contains Telematics version and Data-only version. Telematics version supports voice and data functions, while Data-only version only supports data function. 3) B2 band on EC21-AU module does not support Rx-diversity. 3. 4. Y = Supported. N = Not supported. With a compact profile of 29.0mm 32.0mm 2.4mm, EC21 can meet almost all requirements for M2M applications such as automotive, metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc. EC21 is an SMD type module which can be embedded into applications through its 144-pin pads, including 80 LCC signal pads and 64 other pads. 2.2. Key Features The following table describes the detailed features of EC21 module. Table 2: Key Features of EC21 Module Features Details Power Supply Supply voltage: 3.3V~4.3V Typical supply voltage: 3.8V Class 4 (33dBm2dB) for GSM850 Class 4 (33dBm2dB) for GSM900 Class 1 (30dBm2dB) for DCS1800 Class 1 (30dBm2dB) for PCS1900 Class E2 (27dBm3dB) for GSM850 8-PSK Class E2 (27dBm3dB) for GSM900 8-PSK Class E2 (26dBm3dB) for DCS1800 8-PSK Class E2 (26dBm3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm2dB) for LTE-FDD bands Class 3 (23dBm2dB) for LTE-TDD bands Support up to non-CA Cat 1 FDD and TDD Support 1.4MHz~20MHz RF bandwidth Support MIMO in DL direction LTE-FDD: Max 10Mbps (DL)/5Mbps (UL) Transmitting Power LTE Features EC21_Hardware_Design 2-14 / 105 LTE Module Series EC21 Hardware Design LTE-TDD: Max 8.96Mbps (DL)/3.1Mbps (UL) Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA Support QPSK, 16-QAM and 64-QAM modulation DC-HSDPA: Max 42Mbps (DL) HSUPA: Max 5.76Mbps (UL) WCDMA: Max 384Kbps (DL)/384Kbps (UL) GPRS:
Support GPRS multi-slot class 33 (33 by default) Coding scheme: CS-1, CS-2, CS-3 and CS-4 Max 107Kbps (DL)/85.6Kbps (UL) EDGE:
Support EDGE multi-slot class 33 (33 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Max 296Kbps (DL)/ 236.8Kbps (UL) Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/ CMUX*/HTTPS*/
SMTP*/ MMS*/FTPS*/SMTPS*/SSL*/FILE* protocols Support PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) protocols which are usually used for PPP connections Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression Used for audio function with external codec Support 8-bit A-law*, -law* and 16-bit linear data formats Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA output, software debugging, firmware upgrade and voice over USB*
Support USB serial drivers for: Windows XP, Windows Vista, Windows UMTS Features GSM Features SMS Audio Features PCM Interface USB Interface Internet Protocol Features Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default
(U)SIM Interface Support USIM/SIM card: 1.8V, 3.0V EC21_Hardware_Design 2-15 / 105 LTE Module Series EC21 Hardware Design UART Interface 7/8/8.1/10, Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1, Android 4.x/5.x/6.x/7.x Main UART:
Used for AT command communication and data transmission Baud rates reach up to 921600bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART:
Used for Linux console and log output 115200bps baud rate SD Card Interface Support SD 3.0 protocol SGMII Interface Support 10/100/1000Mbps Ethernet connectivity Rx-diversity Support LTE/WCDMA Rx-diversity GNSS Features AT Commands Network Indication Antenna Interface Gen8C Lite of Qualcomm Protocol: NMEA 0183 Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands Two pins including NET_MODE and NET_STATUS to indicate network connectivity status Including main antenna interface (ANT_MAIN), Rx-diversity antenna interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS) Physical Characteristics Temperature Range Size: (29.00.15)mm (32.00.15)mm (2.40.2)mm Weight: approx. 4.9g Operation temperature range: -35C ~ +75C1) Extended temperature range: -40C ~ +85C2) Storage temperature range: -40C ~ +90C Firmware Upgrade USB interface and DFOTA*
RoHS All hardware components are fully compliant with EU RoHS directive NOTES 1. 2. 3. 1) Within operating temperature range, the module is 3GPP compliant. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operating temperature levels, the module will meet 3GPP specifications again.
* means under development. EC21_Hardware_Design 2-16 / 105 LTE Module Series EC21 Hardware Design The following figure shows a block diagram of EC21 and illustrates the major functional parts. 2.3. Functional Diagram Power management Baseband DDR+NAND flash Radio frequency Peripheral interfaces Figure 1: Functional Diagram 2.4. Evaluation Board In order to help customers develop applications with EC21, Quectel supplies an evaluation board (EVB), USB to RS-232 converter cable, earphone, antenna and other peripherals to control or test the module. EC21_Hardware_Design 2-17 / 105 LTE Module Series EC21 Hardware Design EC21 is equipped with 80 LCC pads plus 64 LGA pads that can be connected to cellular application platform. Sub-interfaces included in these pads are described in detail in the following chapters:
3 Application Interfaces 3.1. General Description Power supply
(U)SIM interface USB interface UART interfaces PCM and I2C interfaces SD card interface ADC interfaces Status indication SGMII interface Wireless connectivity interfaces USB_BOOT interface EC21_Hardware_Design 3-18 / 105 LTE Module Series EC21 Hardware Design 3.2. Pin Description The following tables show the pin definition of EC21 module. Table 3: I/O Parameters Definition Type IO DI DO PI PO AI AO OD Description Bidirectional Digital input Digital output Power input Power output Analog input Analog output Open drain Table 4: Pin Description Power Supply Pin Name Pin No. I/O Description DC Characteristics Comment VBAT_BB 59, 60 PI VBAT_RF 57, 58 PI Power supply for modules baseband part Vmax=4.3V Vmin=3.3V Vnorm=3.8V Power supply for modules RF part Vmax=4.3V Vmin=3.3V Vnorm=3.8V VDD_EXT 7 PO Provide 1.8V for external circuit Vnorm=1.8V IOmax=50mA GND Ground 8, 9, 19, 22, 36, 46, It must be able to provide sufficient current up to 0.8A. It must be able to provide sufficient current up to 1.8A in a burst transmission. Power supply for external GPIOs pull-up circuits. If unused, keep it open. EC21_Hardware_Design 3-19 / 105 LTE Module Series EC21 Hardware Design 48, 50~54, 56, 72, 85~112 Turn on/off Pin Name Pin No. I/O Description DC Characteristics Comment PWRKEY 21 DI Turn on/off the module RESET_N 20 DI Reset signal of the module Status Indication VIHmax=2.1V VIHmin=1.3V VILmax=0.5V VIHmax=2.1V VIHmin=1.3V VILmax=0.5V The output voltage is 0.8V because of the diode drop in the Qualcomm chipset. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment STATUS 61 OD Indicate the module operating status The drive current should be less than 0.9mA. Require external pull-up. If unused, keep it open. NET_MODE 5 DO Indicate the module network registration mode VOHmin=1.35V VOLmax=0.45V NET_ STATUS 6 DO Indicate the module network activity status VOHmin=1.35V VOLmax=0.45V USB Interface 1.8V power domain. It cannot be pulled up before startup. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment USB_VBUS 71 PI USB detection Vmax=5.25V Vmin=3.0V Vnorm=5.0V USB_DP 69 IO USB_DM 70 IO USB differential data bus (+) Compliant with USB 2.0 standard specification. USB differential data bus (-) Compliant with USB 2.0 standard specification. Typical: 5.0V If unused, keep it open. Require differential impedance of 90. If unused, keep it open. Require differential impedance of 90. If unused, keep it open. EC21_Hardware_Design 3-20 / 105 LTE Module Series EC21 Hardware Design
(U)SIM Interface Pin Name Pin No. I/O Description DC Characteristics Comment USIM_GND 10 Specified ground for
(U)SIM card USIM_VDD 14 PO Power supply for
(U)SIM card Either 1.8V or 3.0V is supported by the module automatically. For 1.8V (U)SIM:
Vmax=1.9V Vmin=1.7V For 3.0V (U)SIM:
Vmax=3.05V Vmin=2.7V IOmax=50mA For 1.8V (U)SIM:
VILmax=0.6V VIHmin=1.2V VOLmax=0.45V VOHmin=1.35V For 3.0V (U)SIM:
VILmax=1.0V VIHmin=1.95V VOLmax=0.45V VOHmin=2.55V For 1.8V (U)SIM:
VOLmax=0.45V VOHmin=1.35V For 3.0V (U)SIM:
VOLmax=0.45V VOHmin=2.55V For 1.8V (U)SIM:
VOLmax=0.45V VOHmin=1.35V For 3.0V (U)SIM:
VOLmax=0.45V VOHmin=2.55V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V USIM_DATA 15 IO Data signal of
(U)SIM card USIM_CLK 16 DO Clock signal of
(U)SIM card USIM_RST 17 DO Reset signal of
(U)SIM card USIM_ PRESENCE 13 DI
(U)SIM card insertion detection 1.8V power domain. If unused, keep it open. EC21_Hardware_Design 3-21 / 105 Main UART Interface Pin Name Pin No. I/O Description DC Characteristics Comment RI DCD CTS 62 63 64 DO Ring indicator VOLmax=0.45V VOHmin=1.35V DO Data carrier detection VOLmax=0.45V VOHmin=1.35V DO Clear to send RTS 65 DI Request to send DTR 66 DI Data terminal ready, sleep mode control TXD 67 DO Transmit data RXD 68 DI Receive data Debug UART Interface DBG_TXD 12 DO Transmit data DBG_RXD 11 DI Receive data ADC Interface VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V LTE Module Series EC21 Hardware Design 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. Pulled up by default. Low level wakes up the module. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment Pin Name Pin No. I/O Description DC Characteristics Comment EC21_Hardware_Design 3-22 / 105 LTE Module Series EC21 Hardware Design ADC0 ADC1 45 44 PCM Interface AI AI General purpose analog to digital converter General purpose analog to digital converter Voltage range:
0.3V to VBAT_BB If unused, keep it open. Voltage range:
0.3V to VBAT_BB If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment PCM_IN 24 DI PCM data input PCM_OUT 25 DO PCM data output PCM_SYNC 26 IO frame PCM data synchronization signal PCM_CLK 27 IO PCM clock VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V I2C Interface Pin Name Pin No. I/O Description DC Characteristics Comment I2C_SCL 41 OD I2C_SDA 42 OD I2C serial clock. Used for external codec I2C serial data. Used for external codec 1.8V power domain. If keep open. unused, it 1.8V power domain. If unused, keep it open. 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, keep it open. External pull-up resistor is required. 1.8V only. If unused, keep it EC21_Hardware_Design 3-23 / 105 SD Card Interface Pin Name Pin No. I/O Description DC Characteristics Comment LTE Module Series EC21 Hardware Design open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
SDC2_ DATA3 28 IO SD card SDIO bus DATA3 SDC2_ DATA2 29 IO SD card SDIO bus DATA2 SDC2_ DATA1 30 IO SD card SDIO bus DATA1 EC21_Hardware_Design 3-24 / 105 LTE Module Series EC21 Hardware Design SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V SDC2_ DATA0 31 IO SD card SDIO bus DATA0 SDC2_CLK 32 DO SD card SDIO bus clock SDC2_CMD 33 IO SD card SDIO bus command EC21_Hardware_Design 3-25 / 105 SD_INS_ DET 23 DI SD card insertion detect VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VDD_SDIO 34 PO IOmax=50mA SD card SDIO bus pull-up power SGMII Interface Pin Name Pin No. I/O Description DC Characteristics Comment EPHY_RST_N 119 DO Ethernet PHY reset EPHY_INT_N 120 DI Ethernet PHY interrupt SGMII_ MDATA 121 IO SGMII MDIO
(Management Data Input/Output) data SGMII_ MCLK 122 DO SGMII MDIO
(Management Data Input/Output) clock For 1.8V:
VOLmax=0.45V VOHmin=1.4V For 2.85V:
VOLmax=0.35V VOHmin=2.14V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V For 1.8V:
VOLmax=0.45V VOHmin=1.4V VILmax=0.58V VIHmin=1.27V For 2.85V:
VOLmax=0.35V VOHmin=2.14V VILmax=0.71V VIHmin=1.78V For 1.8V:
VOLmax=0.45V VOHmin=1.4V For 2.85V:
VOLmax=0.35V VOHmin=2.14V LTE Module Series EC21 Hardware Design 1.8V power domain. If unused, keep it open. 1.8V/2.85V configurable. Cannot be used for SD card power. If unused, keep it open. 1.8V/2.85V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V/2.85V power domain. If unused, keep it open. 1.8V/2.85V power domain. If unused, keep it open. EC21_Hardware_Design 3-26 / 105 Pin Name Pin No. I/O Description DC Characteristics Comment USIM2_VDD 128 PO SGMII MDIO pull-up power source SGMII_TX_M 123 AO SGMII_TX_P 124 AO SGMII transmission
- minus SGMII transmission
- plus SGMII_RX_P 125 SGMII_RX_M 126 RF Interface AI AI SGMII receiving
- plus SGMII receiving
- minus ANT_DIV 35 AI Diversity antenna pad ANT_MAIN 49 IO Main antenna pad ANT_GNSS 47 AI GNSS antenna pad GPIO Pins WAKEUP_IN 1 DI Sleep mode control W_DISABLE# 4 DI Airplane mode control LTE Module Series EC21 Hardware Design Configurable power source. 1.8V/2.85V power domain. External pull-up for SGMII MDIO pins. If unused, keep it open. If unused, keep it open. If unused, keep it open. If unused, keep it open. If unused, keep it open. 50 impedance If unused, keep it open. 50 impedance 50 impedance If unused, keep it open. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Cannot be pulled up before startup. Low level wakes up the module. If unused, keep it open. 1.8V power domain. Pull-up by default. At low voltage level, module can enter into airplane mode. If unused, keep it Pin Name Pin No. I/O Description DC Characteristics Comment EC21_Hardware_Design 3-27 / 105 LTE Module Series EC21 Hardware Design open. 1.8V power domain. If unused, keep it open. Application processor sleep state detection VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V Pin Name Pin No. I/O Description DC Characteristics Comment Force the module to enter into emergency download mode. VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Active high. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment RESERVED Reserved Keep these pins unconnected. AP_READY 2 DI USB_BOOT Interface USB_BOOT 115 DI RESERVED Pins 3, 18, 23, 43, 55, 73~84, 113, 114, 116, 117, 140-144. NOTES module. 3.3. Operating Modes
* means under development. 1. 2. Pads 24~27 are multiplexing pins used for audio design on EC21 module and BT function on FC20 The table below briefly summarizes the various operating modes referred in the following chapters. Table 5: Overview of Operating Modes Mode Details Normal Operation Idle Talk/Data Software is active. The module has registered on the network, and it is ready to send and receive data. Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate. EC21_Hardware_Design 3-28 / 105 LTE Module Series EC21 Hardware Design Minimum Functionality Mode Airplane Mode Sleep Mode AT+CFUN command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid. AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid. In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally. Power down Mode In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied. 3.4. Power Saving 3.4.1. Sleep Mode 3.4.1.1. UART Application EC21 is able to reduce its current consumption to a minimum value during the sleep mode. The following section describes power saving procedures of EC21 module. If the host communicates with module via UART interface, the following preconditions can let the module enter into sleep mode. Execute AT+QSCLK=1 command to enable sleep mode. Drive DTR to high level. The following figure shows the connection between the module and the host. Figure 3: Sleep Mode Application via UART EC21_Hardware_Design 3-29 / 105 LTE Module Series EC21 Hardware Design Driving the host DTR to low level will wake up the module. When EC21 has a URC to report, RI signal will wake up the host. Refer to Chapter 3.17 for details about RI behaviors. AP_READY will detect the sleep state of the host (can be configured to high level or low level detection). Please refer to AT+QCFG="apready"* command for details. NOTE
* means under development. 3.4.1.2. USB Application with USB Remote Wakeup Function If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met to let the module enter into sleep mode. Execute AT+QSCLK=1 command to enable sleep mode. Ensure the DTR is held at high level or keep it open. The hosts USB bus, which is connected with the modules USB interface, enters into suspended state. The following figure shows the connection between the module and the host. Figure 4: Sleep Mode Application with USB Remote Wakeup Sending data to EC21 through USB will wake up the module. When EC21 has a URC to report, the module will send remote wake-up signals via USB bus so as to wake up the host. EC21_Hardware_Design 3-30 / 105 LTE Module Series EC21 Hardware Design 3.4.1.3. USB Application with USB Suspend/Resume and RI Function If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host. There are three preconditions to let the module enter into the sleep mode. Execute AT+QSCLK=1 command to enable sleep mode. Ensure the DTR is held at high level or keep it open. The hosts USB bus, which is connected with the modules USB interface, enters into suspended state. The following figure shows the connection between the module and the host. Figure 5: Sleep Mode Application with RI Sending data to EC21 through USB will wake up the module. When EC21 has a URC to report, RI signal will wake up the host. 3.4.1.4. USB Application without USB Suspend Function If the host does not support USB suspend function, USB_VBUS should be disconnected via an additional control circuit to let the module enter into sleep mode. Execute AT+QSCLK=1 command to enable sleep mode. Ensure the DTR is held at high level or keep it open. Disconnect USB_VBUS. The following figure shows the connection between the module and the host. EC21_Hardware_Design 3-31 / 105 LTE Module Series EC21 Hardware Design Figure 6: Sleep Mode Application without Suspend Function Switching on the power switch to supply power to USB_VBUS will wake up the module. Please pay attention to the level match shown in dotted line between the module and the host. Refer to document [1] for more details about EC21 power management application. 3.4.2. Airplane Mode When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways. The W_DISABLE# pin is pulled up by default. Driving it to low level will let the module enter into airplane mode. AT+CFUN command provides the choice of the functionality level through setting <fun> into 0, 1 or 4. AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled. AT+CFUN=1: Full functionality mode (by default). AT+CFUN=4: Airplane mode. RF function is disabled. NOTE Hardware:
Software:
NOTES 1. W_DISABLE# control function is disabled in firmware by default. It can be enabled by AT+QCFG="airplanecontrol" command. This command is under development. 2. The execution of AT+CFUN command will not affect GNSS function. EC21_Hardware_Design 3-32 / 105 LTE Module Series EC21 Hardware Design 3.5. Power Supply 3.5.1. Power Supply Pins EC21 provides four VBAT pins for connection with the external power supply. There are two separate voltage domains for VBAT. Two VBAT_RF pins for modules RF part. Two VBAT_BB pins for modules baseband part. The following table shows the details of VBAT pins and ground pins. Table 6: VBAT and GND Pins Pin Name Pin No. Description Min. Typ. Max. Unit VBAT_RF 57, 58 VBAT_BB 59, 60 Power supply for modules RF part. Power supply for modules baseband part. 3.3 3.3 3.8 3.8 4.3 4.3 GND Ground
0
8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, 85~112 V V V 3.5.2. Decrease Voltage Drop The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks. Figure 7: Power Supply Limits during Burst Transmission EC21_Hardware_Design 3-33 / 105 LTE Module Series EC21 Hardware Design To decrease voltage drop, a bypass capacitor of about 100F with low ESR (ESR=0.7) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT_BB/VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; and the width of VBAT_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be. In addition, in order to get a stable power source, it is suggested that a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 0.5W should be used. The following figure shows the star structure of the power supply. Figure 8: Star Structure of the Power Supply 3.5.3. Reference Design for Power Supply Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply. The following figure shows a reference design for +5V input power source. The typical output of the power supply is about 3.8V and the maximum load current is 3A. EC21_Hardware_Design 3-34 / 105 LTE Module Series EC21 Hardware Design Figure 9: Reference Circuit of Power Supply NOTE In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, the power supply can be cut off. 3.5.4. Monitor the Power Supply AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to document [2]. 3.6. Turn on and off Scenarios 3.6.1. Turn on Module Using the PWRKEY The following table shows the pin definition of PWRKEY. Table 7: Pin Definition of PWRKEY Pin Name Pin No. I/O Description Comment PWRKEY 21 DI Turn on/off the module The output voltage is 0.8V because of the diode drop in the Qualcomm chipset. When EC21 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 500ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure. EC21_Hardware_Design 3-35 / 105 LTE Module Series EC21 Hardware Design Figure 10: Turn on the Module by Using Driving Circuit The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure. Figure 11: Turn on the Module by Using Button The turn on scenario is illustrated in the following figure. EC21_Hardware_Design 3-36 / 105 LTE Module Series EC21 Hardware Design Figure 12: Timing of Turning on Module NOTE Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms. 3.6.2. Turn off Module The following procedures can be used to turn off the module:
Normal power down procedure: Turn off the module using the PWRKEY pin. Normal power down procedure: Turn off the module using AT+QPOWD command. 3.6.2.1. Turn off Module Using the PWRKEY Pin Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure. EC21_Hardware_Design 3-37 / 105 LTE Module Series EC21 Hardware Design Figure 13: Timing of Turning off Module 3.6.2.2. Turn off Module Using AT Command It is also a safe way to use AT+QPOWD command to turn off the module, which is similar to turning off the module via PWRKEY pin. Please refer to document [2] for details about AT+QPOWD command. NOTE 1. In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, the power supply can be cut off. 2. When turn off module with AT command, please keep PWRKEY at high level after the execution of power-off command. Otherwise the module will be turned on again after successfully turn-off. 3.7. Reset the Module The RESET_N pin can be used to reset the module. The module can be reset by driving RESET_N to a low level voltage for time between 150ms and 460ms. Table 8: Pin Definition of RESET_N Pin Name Pin No. I/O Description Comment EC21_Hardware_Design 3-38 / 105 LTE Module Series EC21 Hardware Design RESET_N 20 DI Reset the module 1.8V power domain The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N. Figure 14: Reference Circuit of RESET_N by Using Driving Circuit Figure 15: Reference Circuit of RESET_N by Using Button The reset scenario is illustrated in the following figure. EC21_Hardware_Design 3-39 / 105 LTE Module Series EC21 Hardware Design Figure 16: Timing of Resetting Module NOTES 1. Use RESET_N only when turning off the module by AT+QPOWD command and PWRKEY pin failed. 2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins. 3.8. (U)SIM Interface The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards are supported. Table 9: Pin Definition of the (U)SIM Interface Pin Name Pin No. I/O Description Comment USIM_VDD PO Power supply for (U)SIM card Either 1.8V or 3.0V is supported by the module automatically. USIM_DATA IO Data signal of (U)SIM card USIM_CLK DO Clock signal of (U)SIM card USIM_RST USIM_ PRESENCE USIM_GND DO Reset signal of (U)SIM card DI
(U)SIM card insertion detection 1.8V power domain. If unused, keep it open. Specified ground for (U)SIM card 14 15 16 17 13 10 EC21 supports (U)SIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and EC21_Hardware_Design 3-40 / 105 LTE Module Series EC21 Hardware Design high level detections, and is disabled by default. Please refer to document [2] about AT+QSIMDET command for details. The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector. Figure 17: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure. Figure 18: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector In order to enhance the reliability and availability of the (U)SIM card in customers applications, please EC21_Hardware_Design 3-41 / 105 LTE Module Series EC21 Hardware Design follow the criteria below in (U)SIM circuit design:
Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length as less than 200mm as possible. Keep (U)SIM card signals away from RF and VBAT traces. Assure the ground between the module and the (U)SIM card connector short and wide. Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential. Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1uF, and place it as close to (U)SIM card connector as possible. the ground is complete on customers PCB, If USIM_GND can be connected to PCB ground directly. To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not be more than 15pF. The 0 resistors should be added in series between the module and the (U)SIM card to facilitate debugging. The 33pF capacitors are used for filtering interference of GSM900MHz. Please note that the (U)SIM peripheral circuit should be close to the
(U)SIM card connector. The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the (U)SIM card connector. 3.9. USB Interface EC21 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB interface. Table 10: Pin Description of USB Interface Pin Name Pin No. I/O Description USB_DP USB_DM 69 70 USB differential data bus (+) USB differential data bus (-) IO IO PI USB_VBUS 71 Used for detecting the USB connection Typically 5.0V Comment Require differential impedance of 90 Require differential impedance of 90 GND 72 Ground For more details about the USB 2.0 specification, please visit http://www.usb.org/home. EC21_Hardware_Design 3-42 / 105 LTE Module Series EC21 Hardware Design The USB interface is recommended to be reserved for firmware upgrade in customers designs. The following figure shows a reference circuit of USB interface. Figure 19: Reference Circuit of USB Application A common mode choke L1 is recommended to be added in series between the module and customers MCU in order to suppress EMI spurious transmission. Meanwhile, the 0 resistors (R3 and R4) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible. The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification. It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90. Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides. Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF. Keep the ESD protection components to the USB connector as close as possible. NOTES 1. EC21 module can only be used as a slave device. 2.
* means under development. EC21_Hardware_Design 3-43 / 105 LTE Module Series EC21 Hardware Design 3.10. UART Interfaces The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features. The main UART interface supports 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps and 921600bps baud rates, and the default is 115200bps. The interface is used for data transmission and AT command communication. The debug UART interface supports 115200bps baud rate. It is used for Linux console and log output. The following tables show the pin definition of the UART interfaces. Table 11: Pin Definition of Main UART Interface Pin Name Pin No. Description Comment RI DCD CTS RTS DTR TXD RXD 62 63 64 65 66 67 68 Ring indicator Data carrier detection Clear to send Data terminal ready Transmit data Receive data Request to send 1.8V power domain Table 12: Pin Definition of Debug UART Interface Pin Name Pin No. Description Comment DBG_TXD DBG_RXD 12 11 Transmit data 1.8V power domain Receive data 1.8V power domain I/O DO DO DO DI DI DO DI I/O DO DI EC21_Hardware_Design 3-44 / 105 LTE Module Series EC21 Hardware Design The logic levels are described in the following table. Table 13: Logic Levels of Digital I/O Parameter VIL VIH VOL VOH Min.
-0.3 1.2 0 1.35 Max. 0.6 2.0 0.45 1.8 Unit V V V V The module provides 1.8V UART interface. A level translator should be used if customers application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instruments is recommended. The following figure shows a reference design. Figure 20: Reference Circuit with Translator Chip Please visit http://www.ti.com for more information. Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to the design of solid line section, in terms of both module input and output circuit designs, but please pay attention to the direction of connection. EC21_Hardware_Design 3-45 / 105 LTE Module Series EC21 Hardware Design Figure 21: Reference Circuit with Transistor Circuit NOTE Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps. 3.11. PCM and I2C Interfaces EC21 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes and one I2C interface:
Primary mode (short frame synchronization, works as both master and slave) Auxiliary mode (long frame synchronization, works as master only) In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz PCM_CLK at 16kHz PCM_SYNC. In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC. EC21 supports 8-bit A-law* and -law*, and also 16-bit linear data formats. The following figures show the primary modes timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well as the auxiliary modes timing relationship with 8kHz PCM_SYNC and 256kHz PCM_CLK. EC21_Hardware_Design 3-46 / 105 LTE Module Series EC21 Hardware Design Figure 22: Primary Mode Timing Figure 23: Auxiliary Mode Timing The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design. Table 14: Pin Definition of PCM and I2C Interfaces Pin Name Pin No. I/O Description Comment PCM_IN PCM_OUT 24 25 DI DO PCM data input 1.8V power domain PCM data output 1.8V power domain EC21_Hardware_Design 3-47 / 105 LTE Module Series EC21 Hardware Design PCM_SYNC 26 PCM_CLK I2C_SCL I2C_SDA 27 41 42 IO IO OD OD PCM data frame synchronization signal 1.8V power domain PCM data bit clock 1.8V power domain I2C serial clock Require external pull-up to 1.8V I2C serial data Require external pull-up to 1.8V Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048KHz PCM_CLK and 8KHz PCM_SYNC. Please refer to document [2] about AT+QDAI command for details. The following figure shows a reference design of PCM interface with external codec IC. Figure 24: Reference Circuit of PCM Application with Audio Codec NOTES 1. 2.
* means under development. It PCM_CLK. 3. EC21 works as a master device pertaining to I2C interface. is recommended to reserve RC (R=22, C=22pF) circuits on the PCM lines, especially for 3.12. SD Card Interface EC21 supports SDIO3.0 interface for SD card. The following table shows the pin definition of SD card interface. EC21_Hardware_Design 3-48 / 105 Table 15: Pin Definition of SD Card Interface Pin Name Pin No. I/O Description Comment SDC2_DATA3 28 IO SD card SDIO bus DATA3 SDC2_DATA2 29 IO SD card SDIO bus DATA2 SDC2_DATA1 30 IO SD card SDIO bus DATA1 SDC2_DATA0 31 IO SD card SDIO bus DATA0 SDC2_CLK 32 DO SD card SDIO bus clock SDC2_CMD 33 IO SD card SDIO bus command VDD_SDIO 34 PO SD card SDIO bus pull up power LTE Module Series EC21 Hardware Design SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, more details please refer to SD 3.0 protocol. If unused, keep it open. 1.8V/2.85V configurable. Cannot be used for SD card power. If unused, keep it open. EC21_Hardware_Design 3-49 / 105 SD_INS_DET 23 DI SD card insertion detection The following figure shows a reference design of SD card. LTE Module Series EC21 Hardware Design 1.8V power domain. If unused, keep it open. Figure 25: Reference Circuit of SD card In SD card interface design, in order to ensure good communication performance with SD card, the following design principles should be complied with:
The voltage range of SD card power supply VDD_3V is 2.7V~3.6V and a sufficient current up to 0.8A should be provided. As the maximum output current of VDD_SDIO is 50mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card. To avoid jitter of bus, resistors R7~R11 are needed to pull up the SDIO to VDD_SDIO. Value of these resistors is among 10K~100K and the recommended value is 100K. VDD_SDIO should be used as the pull-up power. In order to adjust signal quality, it is recommended to add 0 resistors R1~R6 in series between the module and the SD card. The bypass capacitors C1~C6 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module. In order to offer good ESD protection, it is recommended to add a TVS diode on SD card pins near the SD card connector with junction capacitance less than 15pF. Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc. It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data Make sure the adjacent trace spacing is two times of the trace width and the load capacitance of trace is 50 (10%). SDIO bus should be less than 15pF. It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm and the total routing length less than 50mm. The total trace length inside the module is 27mm, so the exterior total trace length should be less than 23mm. EC21_Hardware_Design 3-50 / 105 LTE Module Series EC21 Hardware Design 3.13. ADC Interfaces The module provides two analog-to-digital converter (ADC) interfaces. AT+QADC=0 command can be used to read the voltage value on ADC0 pin. AT+QADC=1 command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer to document [2]. In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground. Table 16: Pin Definition of ADC Interfaces Pin Name Pin No. Description ADC0 ADC1 45 44 General purpose analog to digital converter General purpose analog to digital converter The following table describes the characteristic of ADC function. Parameter Typ. Max. Table 17: Characteristic of ADC ADC0 Voltage Range ADC1 Voltage Range Min. 0.3 0.3 ADC Resolution 15 VBAT_BB VBAT_BB Unit V V bits NOTES 1. ADC input voltage must not exceed VBAT_BB. 2. 3. It is prohibited to supply any voltage to ADC pins when VBAT is removed. It is recommended to use a resistor divider circuit for ADC application. 3.14. Network Status Indication The network indication pins can be used to drive network status indication LEDs. The module provides two pins which are NET_MODE and NET_STATUS. The following tables describe the pin definition and logic level changes in different network status. EC21_Hardware_Design 3-51 / 105 LTE Module Series EC21 Hardware Design Table 18: Pin Definition of Network Connection Status/Activity Indicator Pin Name Pin No. I/O Description NET_MODE1) 5 DO Indicate the modules network registration status NET_STATUS 6 DO Indicate the modules network activity status Comment 1.8V power domain Cannot be pulled up before startup 1.8V power domain Table 19: Working State of Network Connection Status/Activity Indicator Pin Name Logic Level Changes Network Status NET_MODE Always High Always Low Registered on LTE network Others Flicker slowly (200ms High/1800ms Low) Network searching NET_STATUS Flicker slowly (1800ms High/200ms Low) Idle Flicker quickly (125ms High/125ms Low) Data transfer is ongoing Always High Voice calling A reference circuit is shown in the following figure. Figure 26: Reference Circuit of the Network Indicator EC21_Hardware_Design 3-52 / 105 LTE Module Series EC21 Hardware Design 3.15. STATUS The STATUS pin is an open drain output for indicating the modules operation status. Customers can connect it to a GPIO of DTE with a pull up resistor, or as the LED indication circuit shown below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state. Table 20: Pin Definition of STATUS Pin Name Pin No. I/O Description Comment STATUS 61 OD Indicate the modules operation status An external pull-up resistor is required. If unused, keep it open. The following figure shows different circuit designs of STATUS, and customers can choose either one according to their application demands. Figure 27: Reference Circuits of STATUS 3.16. Behaviors of RI AT+QCFG="risignaltype","physical" command can be used to configure RI behavior. No matter on which port URC is presented, URC will trigger the behavior of RI pin. EC21_Hardware_Design 3-53 / 105 LTE Module Series EC21 Hardware Design URC can be outputted from UART port, USB AT port and USB modem port through configuration via AT+QURCCFG command. The default port is USB AT port. In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below. NOTE State Idle URC Table 21: Behavior of RI Response RI keeps at high level RI outputs 120ms low pulse when a new URC returns The RI behavior can be changed by AT+QCFG="urc/ri/ring" command. Please refer to document [2] for details. 3.17. SGMII Interface EC21 includes an integrated Ethernet MAC with an SGMII interface and two management interfaces, key features of the SGMII interface are shown below:
IEEE802.3 compliance Support 10M/100M/1000M Ethernet work mode Support VLAN tagging Support IEEE1588 and Precision Time Protocol (PTP) Can be used to connect to external Ethernet PHY like AR8033, or to an external switch Management interfaces support dual voltage 1.8V/2.85V The following table shows the pin definition of SGMII interface. Table 22: Pin Definition of the SGMII Interface Pin Name Pin No. I/O Description Comment Control Signal Part EPHY_RST_N 119 DO Ethernet PHY reset 1.8V/2.85V power domain EPHY_INT_N 120 DI Ethernet PHY interrupt 1.8V power domain EC21_Hardware_Design 3-54 / 105 LTE Module Series EC21 Hardware Design SGMII_MDATA 121 IO 1.8V/2.85V power domain SGMII_MCLK 122 DO 1.8V/2.85V power domain SGMII MDIO (Management Data Input/Output) data SGMII MDIO (Management Data Input/Output) clock USIM2_VDD 128 PO SGMII MDIO pull-up power source SGMII Signal Part SGMII_TX_M 123 AO SGMII transmission-minus SGMII_TX_P 124 AO SGMII transmission-plus SGMII_RX_P 125 SGMII receiving-plus SGMII_RX_M 126 SGMII receiving-minus AI AI Configurable power source. 1.8V/2.85V power domain. External pull-up power source for SGMII MDIO pins. Connect with a 0.1uF capacitor, close to the PHY side. Connect with a 0.1uF capacitor, close to the PHY side. Connect with a 0.1uF capacitor, close to EC21 module. Connect with a 0.1uF capacitor, close to EC21 module. The following figure shows the simplified block diagram for Ethernet application. Figure 28: Simplified Block Diagram for Ethernet Application EC21_Hardware_Design 3-55 / 105 The following figure shows a reference design of SGMII interface with PHY AR8033 application. LTE Module Series EC21 Hardware Design Figure 29: Reference Circuit of SGMII Interface with PHY AR8033 Application In order to enhance the reliability and availability in customers applications, please follow the criteria below in the Ethernet PHY circuit design:
Keep SGMII data and control signals away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc. Keep the maximum trace length less than 10-inch and keep skew on the differential pairs less than 20mil. should be complete. The differential impedance of SGMII data trace is 10010%, and the reference ground of the area Make sure the trace spacing between SGMII RX and TX is at least 3 times of the trace width, and the same to the adjacent signal traces. Table 24: Pin Definition of USB_BOOT Interface Pin Name Pin No. I/O Description Comment USB_BOOT 115 DI Force the module enter into emergency download mode 1.8V power domain. Active high. It is recommended to reserve test point. The following figure shows a reference circuit of USB_BOOT interface. EC21_Hardware_Design 3-56 / 105 LTE Module Series EC21 Hardware Design Figure 31: Reference Circuit of USB_BOOT Interface EC21_Hardware_Design 3-57 / 105 LTE Module Series EC21 Hardware Design 4 GNSS Receiver 4.1. General Description EC21 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS). EC21 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default. By default, EC21 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to document [3]. 4.2. GNSS Performance The following table shows the GNSS performance of EC21. Table 25: GNSS Performance Parameter Description Conditions Sensitivity
(GNSS) TTFF
(GNSS) Cold start Autonomous Reacquisition Autonomous Tracking Autonomous Cold start
@open sky Warm start
@open sky Autonomous XTRA enabled Autonomous XTRA enabled Typ.
-146
-157
-157 35 18 26 2.2 Unit dBm dBm dBm s s s s EC21_Hardware_Design 4-58 / 105 LTE Module Series EC21 Hardware Design Hot start
@open sky CEP-50 Autonomous XTRA enabled Autonomous
@open sky 2.5 1.8
<1.5 s s m Accuracy
(GNSS) NOTES 1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes. 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock. 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command. 4.3. Layout Guidelines The following layout guidelines should be taken into account in customers designs. Maximize the distance among GNSS antenna, main antenna and the Rx-diversity antenna. Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar kept away from the antennas. isolation and protection. Keep 50 characteristic impedance for the ANT_GNSS trace. Please refer to Chapter 5 for GNSS antenna reference design and antenna installation consideration. EC21_Hardware_Design 4-59 / 105 LTE Module Series EC21 Hardware Design 5 Antenna Interfaces EC21 antenna interfaces include a main antenna interface, an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The impedance of the antenna port is 50. 5.1. Main/Rx-diversity Antenna Interfaces 5.1.1. Pin Definition The pin definition of main antenna and Rx-diversity antenna interfaces is shown below. Table 26: Pin Definition of RF Antennas Pin Name Pin No. Description Comment ANT_MAIN ANT_DIV 49 35 Main antenna pad 50 impedance Receive diversity antenna pad 50 impedance I/O IO AI 5.1.2. Operating Frequency Table 27: Module Operating Frequencies 3GPP Band GSM850 EGSM900 DCS1800 PCS1900 WCDMA B1 WCDMA B2 Transmit 824~849 880~915 1710~1785 1850~1910 1920~1980 1850~1910 Receive 869~894 925~960 1805~1880 1930~1990 2110~2170 1930~1990 Unit MHz MHz MHz MHz MHz MHz EC21_Hardware_Design 5-60 / 105 WCDMA B4 1710~1755 2110~2155 LTE Module Series EC21 Hardware Design LTE FDD B7 2500~2570 2620~2690 WCDMA B5 WCDMA B8 824~849 880~915 LTE FDD B1 1920~1980 LTE FDD B2 1850~1910 LTE FDD B3 1710~1785 LTE FDD B4 1710~1755 LTE FDD B5 824~849 LTE FDD B8 LTE FDD B12 LTE FDD B13 LTE FDD B18 LTE FDD B19 LTE FDD B20 LTE FDD B26 LTE FDD B28 880~915 699~716 777~787 815~830 830~845 832~862 814~849 703~748 869~894 925~960 2110~2170 1930~1990 1805~1880 2110~2155 869~894 925~960 729~746 746~756 860~875 875~890 791~821 859~894 758~803 MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz LTE TDD B40 2300~2400 2300~2400 5.1.3. Reference Design of RF Antenna Interface A reference design of ANT_MAIN and ANT_DIV antenna pads is shown as below. A -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default. EC21_Hardware_Design 5-61 / 105 LTE Module Series EC21 Hardware Design Figure 32: Reference Circuit of RF Antenna Interface NOTES receiving sensitivity. possible. 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the 2. ANT_DIV function is enabled by default. 3. Place the -type matching components (R1, C1, C2, R2, C3, C4) as close to the antenna as 5.1.4. Reference Design of RF Layout For users PCB, the characteristic impedance of all RF traces should be controlled as 50. The impedance of the RF traces is usually determined by the trace width (W), the materials dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures
. Figure 33: Microstrip Line Design on a 2-layer PCB EC21_Hardware_Design 5-62 / 105 LTE Module Series EC21 Hardware Design Figure 34: Coplanar Waveguide Line Design on a 2-layer PCB Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground) Figure 36: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground) In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:
EC21_Hardware_Design 5-63 / 105 LTE Module Series EC21 Hardware Design Use impedance simulation tool to control the characteristic impedance of RF traces as 50. The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground. The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones. There should be clearance area under the signal pin of the antenna connector or solder joint. The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W). For more details about RF layout, please refer to document [6]. 5.2. GNSS Antenna Interface The following tables show the pin definition and frequency specification of GNSS antenna interface. Table 28: Pin Definition of GNSS Antenna Interface Pin Name Pin No. I/O Description Comment ANT_GNSS 47 AI GNSS antenna 50 impedance Table 29: GNSS Frequency Type Frequency GPS/Galileo/QZSS 1575.421.023 GLONASS BeiDou 1597.5~1605.8 1561.0982.046 Unit MHz MHz MHz EC21_Hardware_Design 5-64 / 105 A reference design of GNSS antenna is shown as below. LTE Module Series EC21 Hardware Design Figure 37: Reference Circuit of GNSS Antenna NOTES 1. An external LDO can be selected to supply power according to the active antenna requirement. 2. If the module is designed with a passive antenna, then the VDD circuit is not needed. 5.3. Antenna Installation 5.3.1. Antenna Requirement The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna. Table 30: Antenna Requirements Type Requirements Frequency range: 1561MHz~1615MHz Polarization: RHCP or linear VSWR: <2 (Typ.) Passive antenna gain: > 0dBi Active antenna noise figure: <1.5dB Active antenna gain: > 0dBi Active antenna embedded LNA gain: <17 dB GNSS1) GSM/WCDMA/LTE VSWR: 2 Efficiency: > 30%
EC21_Hardware_Design 5-65 / 105 LTE Module Series EC21 Hardware Design Max Input Power: 50 W Input Impedance: 50 Cable insertion loss: <1dB
(GSM850, GSM900, WCDMA B5/B8, LTE-FDD B5/B8/B12/B13/B18/B19/B20/B26/B28) Cable insertion loss: <1.5dB
(DCS1800, PCS1900, WCDMA B1/B2/B4, LTE B1/B2/B3/B4) Cable insertion loss <2dB
(LTE-FDD B7, LTE-TDD B40) NOTE is recommended to use a passive antenna when the module supports B13 or B14, because 1) It harmonics will be generated when using an active antenna, which will affect the GNSS performance 5.3.2. Recommended RF Connector for Antenna Installation If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by Hirose. Figure 38: Dimensions of the U.FL-R-SMT Connector (Unit: mm) EC21_Hardware_Design 5-66 / 105 U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT. LTE Module Series EC21 Hardware Design Figure 39: Mechanicals of U.FL-LP Connectors The following figure describes the space factor of mated connector. Figure 40: Space Factor of Mated Connector (Unit: mm) For more details, please visit http://www.hirose.com. EC21_Hardware_Design 5-67 / 105 LTE Module Series EC21 Hardware Design 6 Electrical, Reliability and Radio Characteristics 6.1. Absolute Maximum Ratings Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table. Table 31: Absolute Maximum Ratings Parameter VBAT_RF/VBAT_BB USB_VBUS Peak Current of VBAT_BB Peak Current of VBAT_RF Voltage at ADC0 Voltage at ADC1 Min.
-0.3
-0.3 0 0 0 0 Voltage at Digital Pins
-0.3 Max. Unit 4.7 5.5 0.8 1.8 2.3 VBAT_BB VBAT_BB V V A A V V V EC21_Hardware_Design 6-68 / 105 LTE Module Series EC21 Hardware Design 6.2. Power Supply Ratings Table 32: Power Supply Ratings Parameter Description Conditions Min. Typ. Max. Unit VBAT_BB and VBAT_RF The actual input voltages must stay between the minimum and maximum values. Voltage drop during burst transmission Maximum power control level on GSM900 Peak supply current
(during transmission slot) Maximum power control level on GSM900 VBAT IVBAT 3.3 3.8 4.3 V 400 mV 1.8 2.0 A V USB_VBUS USB detection 3.0 5.0 5.25 6.3. Operation and Storage Temperatures The operation and storage temperatures are listed in the following table. Parameter Max. Unit Table 33: Operation and Storage Temperatures Operation Temperature Range1)
-35 Extended Temperature Range2) Storage Temperature Range Min.
-40
-40 Typ.
+25
+75
+85
+90 C C C NOTES 1. 2. 1) Within operation temperature range, the module is 3GPP compliant. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again. EC21_Hardware_Design 6-69 / 105 LTE Module Series EC21 Hardware Design 6.4. Current Consumption The values of current consumption are shown below. Table 34: EC21-E Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down Sleep state WCDMA PF=64 (USB disconnected) AT+CFUN=0 (USB disconnected) GSM900 @DRX=9 (USB disconnected) 1.8 DCS1800 @DRX=9 (USB disconnected) 1.8 WCDMA PF=128 (USB disconnected) FDD-LTE PF=64 (USB disconnected) FDD-LTE PF=128 (USB disconnected) GSM900 @DRX=5 (USB disconnected) 22.0 GSM900 @DRX=5 (USB connected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) GSM900 4DL/1UL @32.3dBm GSM900 3DL/2UL @32.18dBm 13 1.4 2.4 1.9 3.2 2.1 32.0 22.5 32.7 22.5 32.5 220 387 467 555 185 305 uA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA GPRS data transfer
(GNSS OFF) GSM900 2DL/3UL @30.3dBm GSM900 1DL/4UL @29.4dBm DCS1800 4DL/1UL @29.6dBm DCS1800 3DL/2UL @29.1dBm IVBAT Idle state
(GNSS OFF) EC21_Hardware_Design 6-70 / 105 EDGE data transfer
(GNSS OFF) DCS1800 2DL/3UL @28.8dBm DCS1800 1DL/4UL @29.1dBm GSM900 4DL/1UL @26dBm GSM900 3DL/2UL @26dBm GSM900 2DL/3UL @25dBm GSM900 1DL/4UL @25dBm DCS1800 4DL/1UL @26dBm DCS1800 3DL/2UL @25dBm DCS1800 2DL/3UL @25dBm DCS1800 1DL/4UL @25dBm WCDMA B1 HSDPA @22.5dBm WCDMA B1 HSUPA @21.11dBm WCDMA B8 HSDPA @22.41dBm WCDMA B8 HSUPA @21.2dBm LTE-FDD B1 @23.45dBm LTE-FDD B3 @23.4dBm LTE-FDD B5 @23.4dBm LTE-FDD B7 @23.86dBm LTE-FDD B8 @23.5dBm LTE-FDD B20 @23.57dBm GSM900 PCL=5 @32.8dBm PCS1800 PCL=0 @29.3dBm LTE Module Series EC21 Hardware Design 431 540 148 245 338 432 150 243 337 430 659 545 767 537 543 445 807 825 786 887 675 770 336 291 683 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA WCDMA data transfer
(GNSS OFF) WCDMA B5 HSDPA @23.5dBm WCDMA B5 HSUPA @21.4dBm LTE data transfer
(GNSS OFF) GSM voice call WCDMA voice call WCDMA B1 @23.69dBm EC21_Hardware_Design 6-71 / 105 LTE Module Series EC21 Hardware Design WCDMA B5 @23.61dBm WCDMA B8 @23.35dBm 741 564 mA mA Table 35: EC21-A Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) Sleep state WCDMA PF=128 (USB disconnected) 1.65 LTE-FDD PF=64 (USB disconnected) 2.31 LTE-FDD PF=128 (USB disconnected) 1.85 Idle state
(GNSS OFF) IVBAT WCDMA data transfer
(GNSS OFF) LTE data transfer
(GNSS OFF) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) WCDMA B2 HSDPA @21.54dBm WCDMA B2 HSUPA @22.19dBm WCDMA B4 HSDPA @22.15dBm WCDMA B4 HSUPA @21.82dBm WCDMA B5 HSDPA @22.22dBm WCDMA B5 HSUPA @21.45dBm LTE-FDD B2 @23.11dBm LTE-FDD B4 @23.16dBm LTE-FDD B12 @23.25dBm WCDMA voice call WCDMA B2 @22.97dBm 10 1.25 2.03 23.1 32.8 22.8 32.8 479.0 530.0 539.0 531.0 454.0 433.0 721.0 748.0 668.0 565.0 uA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC21_Hardware_Design 6-72 / 105 LTE Module Series EC21 Hardware Design WCDMA B4 @22.91dBm WCDMA B5 @23.06dBm 590.0 493.0 mA mA Table 36: EC21-V Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 (USB disconnected) Sleep state LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) 2.26 Idle state
(GNSS OFF) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE data transfer
(GNSS OFF) LTE-FDD B4 @22.77dBm LTE-FDD B13 @23.05dBm Table 37: EC21-AUT Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) Sleep state WCDMA PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) Idle state 10 1.07 2.85 22.0 32.0 762.0 533.0 10 0.99 2.1 1.7 2.9 2.4 22.0 32.0 23.6 33.6 uA mA mA mA mA mA mA mA uA mA mA mA mA mA mA mA mA mA IVBAT IVBAT EC21_Hardware_Design 6-73 / 105 WCDMA data
(GNSS OFF) LTE data transfer
(GNSS OFF) WCDMA B1 HSDPA @22.59dBm WCDMA B1 HSUPA @22.29dBm WCDMA B5 HSDPA @22.22dBm WCDMA B5 HSUPA @21.64dBm LTE-FDD B1 @23.38dBm LTE-FDD B3 @22.87dBm LTE-FDD B5 @23.12dBm LTE-FDD B7 @22.96dBm LTE-FDD B28 @23.31dBm WCDMA voice call WCDMA B1 @24.21dBm WCDMA B5 @23.18dBm Table 38: EC21-AUV Current Consumption Parameter Description Conditions OFF state Power down AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) Sleep state WCDMA PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) 1.86 IVBAT Idle state
(GNSS OFF) WCDMA data transfer (GNSS OFF) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) WCDMA B1 HSDPA @22.59dBm WCDMA B1 HSUPA @22.47dBm WCDMA B5 HSDPA @22.95dBm EC21_Hardware_Design 6-74 / 105 LTE Module Series EC21 Hardware Design 589.0 623.0 511.0 503.0 813.0 840.0 613.0 761.0 650.0 687.0 535.0 Typ. 10 1.15 2.06 1.65 2.46 22.0 32.0 23.5 33.5 623.0 628.0 605.0 mA mA mA mA mA mA mA mA mA mA mA Unit uA mA mA mA mA mA mA mA mA mA mA mA mA LTE Module Series EC21 Hardware Design 610.0 549.0 564.0 789.0 768.0 669.0 693.0 795.0 672.0 616.0 592.0 10 0.85 2.20 23.5 33.8 734.0 778.0 722.0 677.0 688.0 723.0 mA mA mA mA mA mA mA mA mA mA mA uA mA mA mA mA mA mA mA mA mA mA mA WCDMA B5 HSUPA @22.87dBm WCDMA B8 HSDPA @22.37dBm WCDMA B8 HSUPA @22.09dBm LTE-FDD B1 @23.28dBm LTE-FDD B3 @23.2dBm LTE-FDD B5 @23.05dBm LTE-FDD B8 @23.21dBm LTE-FDD B28 @22.9dBm WCDMA B1 @23.43dBm LTE data transfer
(GNSS OFF) WCDMA voice call WCDMA B5 @23.32dBm WCDMA B8 @23.31dBm Table 39: EC21-J Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 (USB disconnected) Sleep state LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) 1.46 Idle state
(GNSS OFF) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) IVBAT LTE data transfer
(GNSS OFF) LTE-FDD B1 @23.35dBm LTE-FDD B3 @22.95dBm LTE-FDD B8 @22.81dBm LTE-FDD B18 @23.15dBm LTE-FDD B19 @23.17dBm LTE-FDD B26 @23.37dBm EC21_Hardware_Design 6-75 / 105 Table 40: EC21-KL Current Consumption Parameter Description Conditions Typ. Unit LTE Module Series EC21 Hardware Design OFF state Power down AT+CFUN=0 (USB disconnected) Sleep state LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) Idle state
(GNSS OFF) IVBAT LTE-FDD PF=64 (USB connected) LTE data transfer
(GNSS OFF) LTE-FDD B1 @23.0dBm LTE-FDD B3 @23.36dBm LTE-FDD B5 @23.56dBm LTE-FDD B7 @23.32dBm LTE-FDD B8 @23.33dBm Table 41: GNSS Current Consumption of EC21 Series Module Parameter Description Conditions Typ. Unit Searching
(AT+CFUN=0) Cold start @Passive Antenna Lost state @Passive Antenna IVBAT
(GNSS) Tracking
(AT+CFUN=0) Instrument Environment Open Sky @Passive Antenna Open Sky @Active Antenna 6.5. RF Output Power The following table shows the RF output power of EC21 module. EC21_Hardware_Design 6-76 / 105 10 1.08 2.1 1.4 24.8 33.5 771.0 780.0 628.0 754.0 680.0 58 58 33 35 43 uA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA LTE Module Series EC21 Hardware Design Table 42: RF Output Power Frequency Max. GSM850/GSM900 33dBm2dB DCS1800/PCS1900 30dBm2dB GSM850/GSM900 (8-PSK) 27dBm3dB DCS1800/PCS1900 (8-PSK) 26dBm3dB WCDMA bands 24dBm+1/-3dB LTE-FDD bands LTE-TDD bands 23dBm2dB 23dBm2dB Min. 5dBm5dB 0dBm5dB 5dBm5dB 0dBm5dB
<-49dBm
<-39dBm
<-39dBm NOTE In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. The design conforms to the GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1. 6.6. RF Receiving Sensitivity The following tables show the conducted RF receiving sensitivity of EC21 series module. Table 43: EC21-E Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) GSM900
-109.0dBm DCS1800
-109.0dBm WCDMA Band 1
-110.5dBm WCDMA Band 5
-110.5dBm WCDMA Band 8
-110.5dBm
-102.0dBm
-102.0dbm
-106.7dBm
-104.7dBm
-103.7dBm LTE-FDD B1 (10M)
-98.0dBm
-98.0dBm
-101.5dBm
-96.3dBm LTE-FDD B3 (10M)
-96.5dBm
-98.5dBm
-101.5dBm
-93.3dBm EC21_Hardware_Design 6-77 / 105 LTE Module Series EC21 Hardware Design LTE-FDD B5 (10M)
-98.0dBm
-98.5dBm
-101.0dBm
-94.3dBm LTE-FDD B7 (10M)
-97.0dBm
-94.5dBm
-99.5dBm
-94.3dBm LTE-FDD B8 (10M)
-97.0dBm
-97.0dBm
-101.0dBm
-93.3dBm LTE-FDD B20 (10M)
-97.5dBm
-99.0dBm
-102.5dBm
-93.3dBm Table 44: EC21-A Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) WCDMA B2
-110.0dBm WCDMA B4
-110.0dBm WCDMA B5
-110.5dBm
-104.7dBm
-106.7dBm
-104.7dBm LTE-FDD B2 (10M)
-98.0dBm
-98.0dBm
-101.0dBm
-94.3dBm LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm LTE-FDD B12 (10M)
-96.5dBm
-98.0dBm
-101.0dBm
-93.3dBm Table 45: EC21-V Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm LTE-FDD B13 (10M)
-95.0dBm
-97.0dBm
-100.0dBm
-93.3dBm Table 46: EC21-AUT Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) WCDMA B1
-110.0dBm WCDMA B5
-110.5dBm
-106.7dBm
-104.7dBm LTE-FDD B1 (10M)
-98.5dBm
-98.0dBm
-101.0dBm
-96.3dBm LTE-FDD B3 (10M)
-98.0dBm
-96.0dBm
-100.0dBm
-93.3dBm
EC21_Hardware_Design 6-78 / 105 LTE Module Series EC21 Hardware Design LTE-FDD B5 (10M)
-98.0dBm
-99.0dBm
-102.5dBm
-94.3dBm LTE-FDD B7 (10M)
-97.0dBm
-95.0dBm
-98.5dBm
-94.3dBm LTE-FDD B28 (10M)
-97.0dBm
-99.0dBm
-102.0dBm
-94.8dBm Table 47: EC21-KL Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) LTE-FDD B1 (10M)
-98.0dBm
-99.5dBm
-100.5dBm
-96.3dBm LTE-FDD B3 (10M)
-97.0dBm
-97.5dBm
-99.5dBm
-93.3dBm LTE-FDD B5 (10M)
-98.0dBm
-99.5dBm
-100.5dBm
-94.3dBm LTE-FDD B7 (10M)
-96.0dBm
-96.0dBm
-98.5dBm
-94.3dBm LTE-FDD B8 (10M)
-97.0dBm
-99.0dBm
-101.0dBm
-93.3dBm Table 48: EC21-J Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) LTE-FDD B1 (10M)
-97.5dBm
-98.7dBm
-100.2dBm
-96.3dBm LTE-FDD B3 (10M)
-96.5dBm
-97.1dBm
-100.5dBm
-93.3dBm LTE-FDD B8 (10M)
-98.4dBm
-99.0dBm
-101.2dBm
-93.3dBm LTE-FDD B18 (10M)
-99.5dBm
-99.0dBm
-101.7dBm
-96.3dBm LTE-FDD B19 (10M)
-99.2dBm
-99.0dBm
-101.4dBm
-96.3dBm LTE-FDD B26 (10M)
-99.5dBm
-99.0dBm
-101.5dBm
-93.8dBm Table 49: EC21-AUV Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) WCDMA B1
-109.5dBm WCDMA B5
-111.0dBm
-106.7dBm
-104.7dBm EC21_Hardware_Design 6-79 / 105
LTE Module Series EC21 Hardware Design WCDMA B8
-111.0dBm
-103.7dBm LTE-FDD B1 (10M)
-97.7dBm
-97.5dBm
-101.3dBm
-96.3dBm LTE-FDD B3 (10M)
-98.2dBm
-98.6dBm
-102.7dBm
-93.3dBm LTE-FDD B5 (10M)
-98.7dBm
-98.2dBm
-102.5dBm
-94.3dBm LTE-FDD B8 (10M)
-98.2dBm
-98.2dBm
-102.3dBm
-93.3dBm LTE-FDD B28 (10M)
-98.0dBm
-98.7dBm
-102.1dBm
-94.8dBm Table 50: EC21-AU Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) GSM850 GSM900
-109.0dBm
-109.0dBm DCS1800
-109.0dBm PCS1900
-109.0dBm WCDMA B1
-110.0dBm WCDMA B2
-110.0dBm WCDMA B5
-111.0dBm WCDMA B8
-111.0dBm LTE-FDD B2 (10M)
-98.2dBm
-102.0dBm
-102.0dBm
-102.0dBm
-102.0dBm
-106.7dBm
-104.7dBm
-104.7dBm
-103.7dBm
-94.3dBm LTE-FDD B1 (10M)
-97.2dBm
-97.5dBm
-100.2dBm
-96.3dBm LTE-FDD B3 (10M)
-98.7dBm
-98.6dBm
-102.2dBm
-93.3dBm LTE-FDD B4 (10M)
-97.7dBm
-97.4dBm
-100.2dBm
-96.3dBm LTE-FDD B5 (10M)
-98.0dBm
-98.2dBm
-101.0dBm
-94.3dBm LTE-FDD B7 (10M)
-97.7dBm
-97.7dBm
-101.2dBm
-94.3dBm LTE-FDD B8 (10M)
-99.2dBm
-98.2dBm
-102.2dBm
-93.3dBm LTE-FDD B28 (10M)
-98.6dBm
-98.7dBm
-102.0dBm
-94.8dBm EC21_Hardware_Design 6-80 / 105 LTE Module Series EC21 Hardware Design LTE-TDD B40 (10M)
-97.2dBm
-98.4dBm
-101.2dBm
-96.3dBm NOTE 1) SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas at the receiver side, which can improve RX performance. 6.7. Electrostatic Discharge The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module. The following table shows the modules electrostatic discharge characteristics. Table 51: Electrostatic Discharge Characteristics Tested Points Contact Discharge Air Discharge Unit VBAT, GND All Antenna Interfaces Other Interfaces 5 4 0.5 10 8 1 kV kV kV 6.8. Thermal Consideration In order to achieve better performance of the module, it is recommended to comply with the following principles for thermal consideration:
On customers PCB design, please keep placement of the module away from heating sources, especially high power components such as ARM processor, audio power amplifier, power supply, etc. Do not place components on the opposite side of the PCB area where the module is mounted, in order to facilitate adding of heatsink when necessary. Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as to ensure better heat dissipation performance. The reference ground of the area where the module is mounted should be complete, and add ground vias as many as possible for better heat dissipation. EC21_Hardware_Design 6-81 / 105 LTE Module Series EC21 Hardware Design Make sure the ground pads of the module and PCB are fully connected. According to customers application demands, the heatsink can be mounted on the top of the module, or the opposite side of the PCB area where the module is mounted, or both of them. The heatsink should be designed with as many fins as possible to increase heat dissipation area. Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and module/PCB. The following shows two kinds of heatsink designs for reference and customers can choose one or both of them according to their application structure. Figure 41: Referenced Heatsink Design (Heatsink at the Top of the Module) Figure 42: Referenced Heatsink Design (Heatsink at the Bottom of Customers PCB) EC21_Hardware_Design 6-82 / 105 LTE Module Series EC21 Hardware Design NOTE The module offers the best performance when the internal BB chip stays below 105C. When the maximum temperature of the BB chip reaches or exceeds 105C, the module works normal but provides reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip temperature reaches or exceeds 115C, the module will disconnect from the network, and it will recover to network connected state after the maximum temperature falls below 115C. Therefore, the thermal design should be maximally optimized to make sure the maximum BB chip temperature always maintains below 105C. Customers can execute AT+QTEMP command and get the maximum BB chip temperature from the first returned value. EC21_Hardware_Design 6-83 / 105 LTE Module Series EC21 Hardware Design 7 Mechanical Dimensions This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm. The tolerances for dimensions without tolerance values are 0.05mm. 7.1. Mechanical Dimensions of the Module 32.00.15 2.40.2 5 1
. 0 0
. 9 2 Figure 43: Module Top and Side Dimensions 0.8 EC21_Hardware_Design 7-84 / 105 LTE Module Series EC21 Hardware Design Figure 44: Module Bottom Dimensions (Bottom View) EC21_Hardware_Design 7-85 / 105 7.2. Recommended Footprint LTE Module Series EC21 Hardware Design Figure 45: Recommended Footprint (Top View) NOTES 1. The keep out area should not be designed. 2. For easy maintenance of the module, please keep about 3mm between the module and other components in the host PCB. EC21_Hardware_Design 7-86 / 105 7.3. Design Effect Drawings of the Module LTE Module Series EC21 Hardware Design Figure 46: Top View of the Module Figure 47: Bottom View of the Module NOTE These are design effect drawings of EC21 module. For more accurate pictures, please refer to the module that you get from Quectel. EC21_Hardware_Design 7-87 / 105 LTE Module Series EC21 Hardware Design 8 Storage, Manufacturing and Packaging 8.1. Storage EC21 is stored in a vacuum-sealed bag. The storage restrictions are shown as below. 1. Shelf life in the vacuum-sealed bag: 12 months at <40C/90%RH. 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
Mounted within 168 hours at the factory environment of 30C/60%RH Stored at <10%RH 3. Devices require baking before mounting, if any circumstances below occurs:
When the ambient temperature is 23C5C and the humidity indicator card shows the humidity is >10% before opening the vacuum-sealed bag. Device mounting cannot be finished within 168 hours at factory conditions of 30C/60%RH. 4. If baking is required, devices may be baked for 8 hours at 120C5C. NOTE As the plastic package cannot be subjected to high temperature, it should be removed from devices to before high temperature (120C) baking. IPC/JEDECJ-STD-033 for baking procedure. If shorter baking time is desired, please refer EC21_Hardware_Design 8-88 / 105 LTE Module Series EC21 Hardware Design 8.2. Manufacturing and Soldering Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.20mm. For more details, please refer to document [4]. It is suggested that the peak reflow temperature is 235C~245C (for SnAg3.0Cu0.5 alloy). The absolute maximum reflow temperature is 260C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:
Figure 48: Reflow Soldering Thermal Profile NOTE During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module label with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. EC21_Hardware_Design 8-89 / 105 EC21 is packaged in tape and reel carriers. One reel is 11.88m long and contains 250pcs modules. The figure below shows the packaging details, measured in mm. 44.00 0.1 2.00 0.1 4.00 0.1 1.5 0 0.1 0.35 0.05 8.3. Packaging
. 1 0 5 7
. 1 5 1
. 0 0 2
. 0 2
. 3 0 0 0
. 4 4 32.5 0.15 33.5 0.15 4.2 0.15 3.1 0.15 32.5 0.15 33.5 0.15 LTE Module Series EC21 Hardware Design 5 1
. 0 3 9 2
. 5 1
. 0 3 0 3
. 5 1
. 0 3 0 3
. Cover tape Direction of feed 48.5 0 0 1 13 44.5+0.20
-0.00 Figure 49: Tape and Reel Specifications EC21_Hardware_Design 8-90 / 105 LTE Module Series EC21 Hardware Design 9 Appendix A References Table 52: Related Documents SN Document Name Remark
[1]
Quectel_EC2x&EG9x&EM05_Power_Management_ Application_Note Power management application notefor EC25, EC21, EC20 R2.0, EC20 R2.1, EG95, EG91 and EM05 modules
[2]
Quectel_EC25&EC21_AT_Commands_Manual EC25 and EC21 AT commands manual
[3]
Quectel_EC25&EC21_GNSS_AT_Commands_Manual EC25 and EC21 GNSS AT commands manual
[4]
Quectel_Module_Secondary_SMT_User_Guide Module secondary SMT user guide
[5]
Quectel_EC21_Reference_Design EC21 reference design
[6]
Quectel_RF_Layout_Application_Note RF layout application note Table 53: Terms and Abbreviations Abbreviation Description Challenge Handshake Authentication Protocol Adaptive Multi-rate Bits Per Second Coding Scheme Circuit Switched Data Clear To Send DC-HSPA+
Dual-carrier High Speed Packet Access Delta Firmware Upgrade Over The Air Downlink AMR bps CHAP CS CSD CTS DFOTA DL EC21_Hardware_Design 9-91 / 105 LTE Module Series EC21 Hardware Design GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System DTR DTX EFR ESD FDD FR GMSK GNSS GPS GSM HR HSPA HSDPA HSUPA I/O Inorm LED LNA LTE MIMO MO MS MT PAP Data Terminal Ready Discontinuous Transmission Enhanced Full Rate Electrostatic Discharge Frequency Division Duplex Full Rate Gaussian Minimum Shift Keying Global Navigation Satellite System Global Positioning System Global System for Mobile Communications Half Rate High Speed Packet Access High Speed Downlink Packet Access High Speed Uplink Packet Access Input/Output Normal Current Light Emitting Diode Low Noise Amplifier Long Term Evolution Multiple Input Multiple Output Mobile Originated Mobile Station (GSM engine) Mobile Terminated Password Authentication Protocol EC21_Hardware_Design 9-92 / 105 LTE Module Series EC21 Hardware Design PCB PDU PPP QAM QPSK RF Rx RHCP SGMII SIM SIMO SMS TDD TDMA TX UL UMTS URC USIM Vmax Vnorm Vmin VIHmax VIHmin Printed Circuit Board Protocol Data Unit Point-to-Point Protocol Quadrature Amplitude Modulation Quadrature Phase Shift Keying Radio Frequency Right Hand Circularly Polarized Receive Subscriber Identification Module Single Input Multiple Output Short Message Service Time Division Duplexing Time Division Multiple Access Serial Gigabit Media Independent Interface Transmitting Direction Uplink Universal Mobile Telecommunications System Unsolicited Result Code Universal Subscriber Identity Module Maximum Voltage Value Normal Voltage Value Minimum Voltage Value Maximum Input High Level Voltage Value Minimum Input High Level Voltage Value TD-SCDMA Time Division-Synchronous Code Division Multiple Access EC21_Hardware_Design 9-93 / 105 LTE Module Series EC21 Hardware Design VILmax VILmin VImax VImin VOHmax VOHmin VOLmax VOLmin VSWR Maximum Input Low Level Voltage Value Minimum Input Low Level Voltage Value Absolute Maximum Input Voltage Value Absolute Minimum Input Voltage Value Maximum Output High Level Voltage Value Minimum Output High Level Voltage Value Maximum Output Low Level Voltage Value Minimum Output Low Level Voltage Value Voltage Standing Wave Ratio WCDMA Wideband Code Division Multiple Access EC21_Hardware_Design 9-94 / 105 LTE Module Series EC21 Hardware Design 10 Appendix B GPRS Coding Schemes Table 54: Description of Different Coding Schemes Radio Block excl. USF and BCS Scheme Code Rate USF Pre-coded USF BCS Tail Coded Bits Punctured Bits Data Rate Kb/s CS-1 1/2 3 3 181 40 4 456 0 9.05 CS-2 2/3 3 6 268 16 4 588 132 13.4 CS-3 3/4 3 6 312 16 4 676 220 15.6 CS-4 1 3
12 428 16 456 21.4 EC21_Hardware_Design 10-95 / 105 LTE Module Series EC21 Hardware Design 11 Appendix C GPRS Multi-slot Classes Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table. Table 55: GPRS Multi-slot Classes Multislot Class Downlink Slots Uplink Slots Active Slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 2 3 2 3 3 4 3 4 4 4 3 4 1 1 2 1 2 2 3 1 2 2 3 4 3 4 2 3 3 4 4 4 4 5 5 5 5 5 NA NA EC21_Hardware_Design 11-96 / 105 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 5 6 7 8 6 6 6 6 6 8 8 8 8 8 8 5 5 5 5 5 6 7 8 2 3 4 4 6 2 3 4 4 6 8 1 2 3 4 LTE Module Series EC21 Hardware Design NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6 6 6 6 EC21_Hardware_Design 11-97 / 105 LTE Module Sires EC21 Hardware Design 12 Appendix D EDGE Modulation and Coding Schemes Table 56: EDGE Modulation and Coding Schemes Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot 4 Timeslot CS-1:
CS-2:
CS-3:
CS-4:
MCS-1 MCS-2 MCS-3 MCS-4 MCS-5 MCS-6 MCS-7 MCS-8 MCS-9 GMSK GMSK GMSK GMSK GMSK GMSK GMSK GMSK 8-PSK 8-PSK 8-PSK 8-PSK 8-PSK
C B A C B A B A A 9.05kbps 18.1kbps 36.2kbps 13.4kbps 26.8kbps 53.6kbps 15.6kbps 31.2kbps 62.4kbps 21.4kbps 42.8kbps 85.6kbps 8.80kbps 17.60kbps 35.20kbps 11.2kbps 22.4kbps 44.8kbps 14.8kbps 29.6kbps 59.2kbps 17.6kbps 35.2kbps 70.4kbps 22.4kbps 44.8kbps 89.6kbps 29.6kbps 59.2kbps 118.4kbps 44.8kbps 89.6kbps 179.2kbps 54.4kbps 108.8kbps 217.6kbps 59.2kbps 118.4kbps 236.8kbps EC21_Hardware_Design 12-98 / 105 According to the definition of mobile and fixed device is described in Part 2.1091(b), this FCC Certification Requirements. device is a mobile device. And the following conditions must be met:
1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time- averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091. 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the users body and must not transmit simultaneously with any other antenna or transmitter. 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201606EC21A. 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:
transmitter GSM/850/GSM1900/ WCDMA B2/B5/LTE B2/B4/B5/B7: <4dBi 5. This module must not transmit simultaneously with any other antenna or 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines. For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093 If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations. For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:
paragraph). A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labelled withan FCC ID -
Section 2.926 (see 2.2 Certification (labelling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labelling requirements,options and OEM user manual instructions that are required (see next For a host using a certified modular with a standard fixed label, if (1) the modules FCC ID is notvisible when installed in the host, or (2) if the host is marketed so that end users do not havestraightforward commonly used methods for access to remove the module so that the FCC ID ofthe module is visible; then an additional permanent label referring to the enclosed module:Contains Transmitter Module FCC ID:XMR201606EC21A or Contains FCC ID: XMR201606EC21A mustbe used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID. The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the users authority to operate the equipment. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements.
1 2 3 | ID Label | ID Label/Location Info | 183.65 KiB | February 16 2023 |
CAN Mobilities Inc. Label and Location CAN GO FCC ID: 2AVFA-CANGO-4G-EC21 Front side of EUT CAN Mobilities Inc.
1 2 3 | Attesation regarding covered equipment | Attestation Statements | 95.47 KiB | February 16 2023 |
Sample Attestation Statement -FCC Date: February 8, 2023 Federal Communications Commission Authorization and Evaluation Division 7435 Oakland Mills Road Columbia, Maryland 21046 Re: Attestation regarding covered equipment and the Covered List FCC ID: 2AVFA- CANGO-4G-EC21 To whom it may concern, Per 2.911(d)(5)(i), CAN Mobilities Inc. certifies that the equipment for which authorization is sought is not covered equipment prohibited from receiving an equipment authorization pursuant to section 2.903 of the FCC rules. Per 2.911(d)(5)(ii), CAN Mobilities Inc. certifies that, as of the date of the filing of the application, the applicant is not identified on the Covered List as an entity producing covered equipment. Sincerely, Abdullah Hejazi VP of Software Engineering CAN Mobilities Inc.
1 2 3 | Cover letter | Cover Letter(s) | 38.37 KiB | February 16 2023 |
CAN Mobilities Inc. DATE: 2022-11-2 Federal Communications Commission 7435 Oakland Mills Road Columbia, MD 21046 Re: Applicant: CAN Mobilities, Inc. FCC ID: 2AVFA-CANGO-4G-EC21 Part 2.933(b) Requesting Class II permissive for FCC ID: 2AVFA-CANGO-4G-EC21 The purpose of this letter is to request a Class II Permissive change for FCC ID: 2AVFA-CANGO-4G-
EC21. The major change field under this application is:
1. Enable the model (FCC ID: 2AVFA-CANGO-4G-EC21) to be integrated with BLE inside the same host (Model: CAN Go, FCC ID: 2AVFA-YESWECAN) 2. The subject-approved module is being used in a portable configuration- a walking cane (Model:
CAN Go, FCC ID: 2AVFA-YESWECAN), and the distance between the antenna and the human hand is 0mm. The module LTE output power is restricted to 15dBM, and SAR testing was performed to demonstrate RF compliance. Please let us know if you might require anything further to assist with your review of this Change in Class II Permissive Change. Best Regards, Abdullah Hejazi VP of Engineering CAN Mobilities
1 2 3 | Modular Integration Instructions | Operational Description | 154.30 KiB | February 16 2023 |
FCC Modular Integration Instructions CAN Mobilities, Inc. MODEL: CAN Go Modification statement CAN Mobilities, Inc., has not approved any changes or modifications to this device by the user. Any changes or modifications could void the users authority to operate the equipment. Interference statement This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. FCC Class B digital device notice This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
interference
- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help. CAN Mobilities, Inc 119 Independence Drive, Menlo Park, CA 94025 List of applicable FCC rules Part 15 Subpart B Summary of the specific operational use conditions The CAN Go is built on the BT chip nRF52840 from Nordic semiconductor. The module is using an omni-directional antenna, no limitation needs to be remarked. The module uses LTE module FCC ID: 2AVFA-CANGO-4G-EC21 modified to limit maximum transmit power to 15dBM. Limited module procedures CAN Go is certified as Single Modular Approval. Trace antenna designs Not applicable. CAN Go uses external antennas please refer to Antennas section below. Antennas This radio transmitter has been approved by FCC to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. 1. BLE antenna TDK ANT016008LCS2442MA1 2. LTE main antenna Shanghai Deep Fast Technology, 2R001A 3. LTE div antenna Shanghai Deep Fast Technology, 2R001B The following table includes the maximum permissible gain of the LTE antennas. Antenna Type Band 12 - peak Gain (dBi) Band 4 - peak Gain (dBi) Band 2 - peak Gain (dBi) Main Antenna Diversity Antenna FPC Patch antenna FPC Patch antenna
-5.05671 2.955644 0.50861
-10.55255142
-2.81187831
-4.569752913 CAN Mobilities, Inc 119 Independence Drive, Menlo Park, CA 94025 The following table includes the maximum permissible gain of the BLE antennas Antenna Type Band 12 - peak Gain (dBi) Manufacturer Model number(Manufacturer) Model number(tdk.com) Gain (dBi) Connector type BLE Antenna Chip antenna
-5.05671 TDK ANT016008LCS2442MA1 ANT016008LCS2442MA1 1.6 dBi soldered on PCB Label and Compliance Information The host device shall be properly labeled to identify the modules within the host device. The certification label of the module shall be clearly visible at all times when installed in the host device, otherwise, the host device must be labeled to display the FCC ID of the module, preceded by the words "Contains transmitter module", or the word "Contains", or similar wording expressing the same meaning, as follows:
Contains FCC ID: 2AVFA-CANGO-4G-EC21 RF exposure considerations The module is being used in a portable configuration- a walking cane (Model: CAN Go, FCC ID: 2AVFA-YESWECAN). The antenna is used less than 20 cm from the user hand, torso, or extremities. The module LTE maximum transmit power is restricted to 15dBM. The UAT has been tested and meets applicable limits for radio frequency (RF) exposure for simultaneous transmission of LTE and BLE radio. This device complies with FCC radiation exposure limits set forth for an uncontrolled environment and meets the FCC radio frequency (RF) Exposure Guidelines. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. CAN Mobilities, Inc 119 Independence Drive, Menlo Park, CA 94025 Information on test modes and additional testing requirements 1) Bluetooth Module is always on and can be reset using the factory reset in step (3) below 2) Cellular Module is always on and can be reset using the factory reset in step (3) below 3) How to reset to factory default Press and hold the middle and left buttons in the unit for 30 seconds. Additional testing, Part 15 Subpart B disclaimer CAN Go is manufactured as the programmable logic controller using Nordic nRF52840 Bluetooth module and Quectel EC21 cellular radio CAN Mobilities, Inc 119 Independence Drive, Menlo Park, CA 94025
1 2 3 | Request for Confidentiality | Cover Letter(s) | 17.34 KiB | February 16 2023 |
Request for Confidentiality Letter-FCC Date: 2023-01-23 Federal Communications Commission Authorization and Evaluation Division 7435 Oakland Mills Road Columbia, Maryland 21046 Re: Request for confidentiality Applicant: CAN Mobilities, Inc. FCC ID: 2AVFA-CANGO-4G-EC21 To whom it may concern, We hereby respectfully request that under the provision of 47 CFR 0.459 and 0.457(d) the documents listed below and attached with this application for certification be provided with confidential status. Operational Description Any exhibit/information for which we have requested confidentiality, but which may not be accorded such treatment by the FCC, should be returned to us. The documents listed above contain trade secrets that are treated as confidential by us. Substantial competitive harm to us could result should they be made available to the public. Sincerely, Abdullah Hejazi VP of Engineering CAN Mobilities Inc.
1 2 3 | US Agent Attestation | Attestation Statements | 89.99 KiB | February 16 2023 |
Sample US Agent Attestation Letter Federal Communications Commission TO:
Authorization and Evaluation Division 7435 Oakland Mills Road Columbia, Maryland 21046 Re: section 2.911(d)(7) filing To whom it may concern, This letter is to confirm that Abdullah Hejazi has accepted responsibility to act as the agent for service of process as acknowledged by the applicant, CAN Mobilities Inc. U.S. Agent: Abdullah Hejazi Title: VP of Software Engineering Company Name: CAN Mobilities Inc Address: 445 Minnesota Street, Suite 1500, Saint Paul, MN 55101 Telephone No: 310-866-8982 Email: abdullah@canmobilities.com The applicant accepts and acknowledges the obligation to maintain an agent for no less than one year after the grantee has terminated all marketing and importation or the conclusion of any Commission-related proceeding involving the equipment. Signature of Applicant:
Signature of U.S. Agent (if different from applicant):
Name: Abdullah Hejazi Date: February 8, 2023 Name:
Date:
frequency | equipment class | purpose | ||
---|---|---|---|---|
1 | 2023-02-16 | 1860 ~ 1900 | PCB - PCS Licensed Transmitter | Class II Permissive Change |
2 | 2022-05-24 | 1860 ~ 1900 | PCB - PCS Licensed Transmitter | Change in Identification |
3 | 2022-03-11 | 1860 ~ 1900 | PCB - PCS Licensed Transmitter |
app s | Applicant Information | |||||
---|---|---|---|---|---|---|
1 2 3 | Effective |
2023-02-16
|
||||
1 2 3 |
2022-05-24
|
|||||
1 2 3 |
2022-03-11
|
|||||
1 2 3 | Applicant's complete, legal business name |
CAN Mobilities Inc
|
||||
1 2 3 | FCC Registration Number (FRN) |
0029047735
|
||||
1 2 3 | Physical Address |
119 Independence Dr
|
||||
1 2 3 |
Menlo Park, CA
|
|||||
1 2 3 |
United States
|
|||||
app s | TCB Information | |||||
1 2 3 | TCB Application Email Address |
m******@element.com
|
||||
1 2 3 |
d******@element.com
|
|||||
1 2 3 | TCB Scope |
B1: Commercial mobile radio services equipment in the following 47 CFR Parts 20, 22 (cellular), 24,25 (below 3 GHz) & 27
|
||||
app s | FCC ID | |||||
1 2 3 | Grantee Code |
2AVFA
|
||||
1 2 3 | Equipment Product Code |
CANGO-4G-EC21
|
||||
app s | Person at the applicant's address to receive grant or for contact | |||||
1 2 3 | Name |
A****** H********
|
||||
1 2 3 | Telephone Number |
31086********
|
||||
1 2 3 | Fax Number |
65068********
|
||||
1 2 3 |
a******@canmobilities.com
|
|||||
app s | Technical Contact | |||||
n/a | ||||||
app s | Non Technical Contact | |||||
n/a | ||||||
app s | Confidentiality (long or short term) | |||||
1 2 3 | Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | Yes | ||||
1 2 3 | No | |||||
1 2 3 | Long-Term Confidentiality Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | No | ||||
if no date is supplied, the release date will be set to 45 calendar days past the date of grant. | ||||||
app s | Cognitive Radio & Software Defined Radio, Class, etc | |||||
1 2 3 | Is this application for software defined/cognitive radio authorization? | No | ||||
1 2 3 | Equipment Class | PCB - PCS Licensed Transmitter | ||||
1 2 3 | Description of product as it is marketed: (NOTE: This text will appear below the equipment class on the grant) | CAN Go-EC21-A | ||||
1 2 3 | Related OET KnowledgeDataBase Inquiry: Is there a KDB inquiry associated with this application? | No | ||||
1 2 3 | Modular Equipment Type | Single Modular Approval | ||||
1 2 3 | Purpose / Application is for | Class II Permissive Change | ||||
1 2 3 | Change in Identification | |||||
1 2 3 | Composite Equipment: Is the equipment in this application a composite device subject to an additional equipment authorization? | No | ||||
1 2 3 | Related Equipment: Is the equipment in this application part of a system that operates with, or is marketed with, another device that requires an equipment authorization? | No | ||||
1 2 3 | Grant Comments | Class II Permissive Change for integration into portable host, CAN Go, under the conditions explained in this filing. The highest reported SAR for body-worn and extremity (hand) exposure conditions are 1.44 W/kg and <0.1 W/kg, respectively. Single Modular Approval. Output power is conducted. LTE supports 1.4/3/5/10/15/20 MHz BW modes in Band 2 and Band 4, 1.4/3/5/10 MHz BW modes in Band 12. This device is to be used in mobile or fixed applications only. Antenna gain including cable loss must not exceed 9.6 dBi of frequency band 699-716 MHz, 6 dBi of frequency band 1710-1755 MHz, 9 dBi of frequency band 1850-1910 MHz, 10.92 dBi of frequency band 824-849 MHz, for the purpose of satisfying the requirements of CFR 47 §2.1043 and §2.1091. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operated in conjunction with any antenna or transmitter. The final product operating with this transmitter must include operating instructions and antenna installation instructions, for end-users and installers to satisfy RF exposure compliance requirements. Compliance of this device in all final product configurations is the responsibility of the Grantee. Installation of this device into specific final products may require the submission of a Class II permissive change application containing data pertinent to RF Exposure, spurious emissions, ERP/EIRP, and host/module authentication, or new application if appropriate. This device contains functions that are not operational in U.S Territories. This filing is only applicable for US operations. | ||||
1 2 3 | Class II change: The minor circuitry for non-transmitter portions is changed. Single Modular Approval. Output power is conducted. LTE supports 1.4/3/5/10/15/20 MHz BW modes in Band 2 and Band 4, 1.4/3/5/10 MHz BW modes in Band 12. This device is to be used in mobile or fixed applications only. Antenna gain including cable loss must not exceed 9.6 dBi of frequency band 699-716 MHz, 6 dBi of frequency band 1710-1755 MHz, 9 dBi of frequency band 1850-1910 MHz, 10.92 dBi of frequency band 824-849 MHz, for the purpose of satisfying the requirements of CFR 47 §2.1043 and §2.1091. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operated in conjunction with any antenna or transmitter. The final product operating with this transmitter must include operating instructions and antenna installation instructions, for end-users and installers to satisfy RF exposure compliance requirements. Compliance of this device in all final product configurations is the responsibility of the Grantee. Installation of this device into specific final products may require the submission of a Class II permissive change application containing data pertinent to RF Exposure, spurious emissions, ERP/EIRP, and host/module authentication, or new application if appropriate. This device contains functions that are not operational in U.S Territories. This filing is only applicable for US operations. | |||||
1 2 3 | Single Modular Approval. Output power is conducted. This device is to be used in mobile or fixed applications only. Antenna gain including cable loss must not exceed 9.6 dBi of frequency band 699-716MHz, 6 dBi of frequency band 1710-1755MHz, 9 dBi of frequency band 1850-1910MHz, 10.91 dBi of frequency band 824-849MHz,for the purpose of satisfying the requirements of 2.1043 and 2.1091. They operate at frequencies of 1.5 GHz or below and their effective radiated power (ERP) is 1.5 watts or more, or they operate at frequencies above 1.5 GHz and their ERP is 3watts or more. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operated in conjunction with any antenna or transmitter not described under this FCC ID. The final product operating with this transmitter must include operating instructions and antenna installation instructions, for end-users and installers to satisfy RF exposure compliance requirements. Compliance of this device in all final product configurations is the responsibility of the Grantee. Installation of this device into specific final products may require the submission of a Class II permissive change application containing data pertinent to RF Exposure, spurious emissions, ERP/EIRP, and host/module authentication, or new application if appropriate. Installation of this device into specific final products may require the submission of a Class II permissive change application containing data pertinent to RF Exposure, spurious emissions, ERP/EIRP, and host/module authentication, or new application if appropriate. | |||||
1 2 3 | Is there an equipment authorization waiver associated with this application? | No | ||||
1 2 3 | If there is an equipment authorization waiver associated with this application, has the associated waiver been approved and all information uploaded? | No | ||||
app s | Test Firm Name and Contact Information | |||||
1 2 3 | Firm Name |
Element Materials Technology Washington DC LLC
|
||||
1 2 3 |
BAY AREA COMPLIANCE LABORATORIES CORP.
|
|||||
1 2 3 |
Bay Area Compliance Laboratories Corp.(Linkou Lab)
|
|||||
1 2 3 | Name |
R******** O********
|
||||
1 2 3 |
G****** T******
|
|||||
1 2 3 | Telephone Number |
410-2********
|
||||
1 2 3 |
+886-******** Extension:
|
|||||
1 2 3 |
886-3******** Extension:
|
|||||
1 2 3 | Fax Number |
410 2********
|
||||
1 2 3 |
+886-********
|
|||||
1 2 3 |
+886-********
|
|||||
1 2 3 |
r******@pctestlab.com
|
|||||
1 2 3 |
g******@baclcorp.com
|
|||||
Equipment Specifications | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
1 | 1 | 22H | 826.4 | 846.6 | 0.205 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
1 | 2 | 24E | 1852.4 | 1907.6 | 0.209 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
1 | 3 | 27 | 1712.4 | 1752.6 | 0.182 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
1 | 4 | 27 | 699.7 | 715.3 | 0.225 | 2.5 ppm | 1M11G7D | ||||||||||||||||||||||||||||||||||
1 | 5 | 27 | 699.7 | 715.3 | 0.192 | 2.5 ppm | 1M10W7D | ||||||||||||||||||||||||||||||||||
1 | 6 | 27 | 700.5 | 714.5 | 0.238 | 2.5 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
1 | 7 | 27 | 700.5 | 714.5 | 0.199 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
1 | 8 | 27 | 701.5 | 713.5 | 0.237 | 2.5 ppm | 4M54G7D | ||||||||||||||||||||||||||||||||||
1 | 9 | 27 | 701.5 | 713.5 | 0.201 | 2.5 ppm | 4M54W7D | ||||||||||||||||||||||||||||||||||
1 | 1 | 27 | 704 | 711 | 0.242 | 2.5 ppm | 9M12G7D | ||||||||||||||||||||||||||||||||||
1 | 11 | 27 | 704 | 711 | 0.206 | 2.5 ppm | 9M12W7D | ||||||||||||||||||||||||||||||||||
1 | 12 | 24E | 1850.7 | 1909.3 | 0.242 | 2.5 ppm | 1M10G7D | ||||||||||||||||||||||||||||||||||
1 | 13 | 24E | 1850.7 | 1909.3 | 0.2 | 2.5 ppm | 1M10W7D | ||||||||||||||||||||||||||||||||||
1 | 14 | 24E | 1851.5 | 1908.5 | 0.244 | 2.5 ppm | 2M76G7D | ||||||||||||||||||||||||||||||||||
1 | 15 | 24E | 1851.5 | 1908.5 | 0.199 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
1 | 16 | 24E | 1852.5 | 1907.5 | 0.24 | 2.5 ppm | 4M54G7D | ||||||||||||||||||||||||||||||||||
1 | 17 | 24E | 1852.5 | 1907.5 | 0.191 | 2.5 ppm | 4M54W7D | ||||||||||||||||||||||||||||||||||
1 | 18 | 24E | 1855 | 1905 | 0.244 | 2.5 ppm | 9M12G7D | ||||||||||||||||||||||||||||||||||
1 | 19 | 24E | 1855 | 1905 | 0.192 | 2.5 ppm | 9M12W7D | ||||||||||||||||||||||||||||||||||
1 | 2 | 24E | 1857.5 | 1902.5 | 0.235 | 2.5 ppm | 13M6G7D | ||||||||||||||||||||||||||||||||||
1 | 21 | 24E | 1857.5 | 1902.5 | 0.19 | 2.5 ppm | 13M6W7D | ||||||||||||||||||||||||||||||||||
1 | 22 | 24E | 1860 | 1900 | 0.234 | 2.5 ppm | 18M6G7D | ||||||||||||||||||||||||||||||||||
1 | 23 | 24E | 1860 | 1900 | 0.193 | 2.5 ppm | 18M6W7D | ||||||||||||||||||||||||||||||||||
1 | 24 | 27 | 1710.7 | 1754.3 | 0.24 | 2.5 ppm | 1M10G7D | ||||||||||||||||||||||||||||||||||
1 | 25 | 27 | 1710.7 | 1754.3 | 0.209 | 2.5 ppm | 1M11W7D | ||||||||||||||||||||||||||||||||||
1 | 26 | 27 | 1711.5 | 1753.5 | 0.202 | 2.5 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
1 | 27 | 27 | 1711.5 | 1753.5 | 0.202 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
1 | 28 | 27 | 1712.5 | 1752.5 | 0.237 | 2.5 ppm | 4M52G7D | ||||||||||||||||||||||||||||||||||
1 | 29 | 27 | 1712.5 | 1752.5 | 0.201 | 2.5 ppm | 4M52W7D | ||||||||||||||||||||||||||||||||||
1 | 3 | 27 | 1715 | 1750 | 0.236 | 2.5 ppm | 9M08G7D | ||||||||||||||||||||||||||||||||||
1 | 31 | 27 | 1715 | 1750 | 0.198 | 2.5 ppm | 9M08W7D | ||||||||||||||||||||||||||||||||||
1 | 32 | 27 | 1717.5 | 1747.5 | 0.236 | 2.5 ppm | 13M5G7D | ||||||||||||||||||||||||||||||||||
1 | 33 | 27 | 1717.5 | 1747.5 | 0.192 | 2.5 ppm | 13M5W7D | ||||||||||||||||||||||||||||||||||
1 | 34 | 27 | 1720 | 1745 | 0.224 | 2.5 ppm | 18M5G7D | ||||||||||||||||||||||||||||||||||
1 | 35 | 27 | 1720 | 1745 | 0.2 | 2.5 ppm | 18M5W7D | ||||||||||||||||||||||||||||||||||
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
2 | 1 | 22H | 826.4 | 846.6 | 0.205 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
2 | 2 | 24E | 1852.4 | 1907.6 | 0.209 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
2 | 3 | 27 | 1712.4 | 1752.6 | 0.182 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
2 | 4 | 27 | 699.7 | 715.3 | 0.225 | 2.5 ppm | 1M11G7D | ||||||||||||||||||||||||||||||||||
2 | 5 | 27 | 699.7 | 715.3 | 0.192 | 2.5 ppm | 1M10W7D | ||||||||||||||||||||||||||||||||||
2 | 6 | 27 | 700.5 | 714.5 | 0.238 | 2.5 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
2 | 7 | 27 | 700.5 | 714.5 | 0.199 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
2 | 8 | 27 | 701.5 | 713.5 | 0.237 | 2.5 ppm | 4M54G7D | ||||||||||||||||||||||||||||||||||
2 | 9 | 27 | 701.5 | 713.5 | 0.201 | 2.5 ppm | 4M54W7D | ||||||||||||||||||||||||||||||||||
2 | 1 | 27 | 704 | 711 | 0.242 | 2.5 ppm | 9M12G7D | ||||||||||||||||||||||||||||||||||
2 | 11 | 27 | 704 | 711 | 0.206 | 2.5 ppm | 9M12W7D | ||||||||||||||||||||||||||||||||||
2 | 12 | 24E | 1850.7 | 1909.3 | 0.242 | 2.5 ppm | 1M10G7D | ||||||||||||||||||||||||||||||||||
2 | 13 | 24E | 1850.7 | 1909.3 | 0.2 | 2.5 ppm | 1M10W7D | ||||||||||||||||||||||||||||||||||
2 | 14 | 24E | 1851.5 | 1908.5 | 0.244 | 2.5 ppm | 2M76G7D | ||||||||||||||||||||||||||||||||||
2 | 15 | 24E | 1851.5 | 1908.5 | 0.199 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
2 | 16 | 24E | 1852.5 | 1907.5 | 0.24 | 2.5 ppm | 4M54G7D | ||||||||||||||||||||||||||||||||||
2 | 17 | 24E | 1852.5 | 1907.5 | 0.191 | 2.5 ppm | 4M54W7D | ||||||||||||||||||||||||||||||||||
2 | 18 | 24E | 1855 | 1905 | 0.244 | 2.5 ppm | 9M12G7D | ||||||||||||||||||||||||||||||||||
2 | 19 | 24E | 1855 | 1905 | 0.192 | 2.5 ppm | 9M12W7D | ||||||||||||||||||||||||||||||||||
2 | 2 | 24E | 1857.5 | 1902.5 | 0.235 | 2.5 ppm | 13M6G7D | ||||||||||||||||||||||||||||||||||
2 | 21 | 24E | 1857.5 | 1902.5 | 0.19 | 2.5 ppm | 13M6W7D | ||||||||||||||||||||||||||||||||||
2 | 22 | 24E | 1860 | 1900 | 0.234 | 2.5 ppm | 18M6G7D | ||||||||||||||||||||||||||||||||||
2 | 23 | 24E | 1860 | 1900 | 0.193 | 2.5 ppm | 18M6W7D | ||||||||||||||||||||||||||||||||||
2 | 24 | 27 | 1710.7 | 1754.3 | 0.24 | 2.5 ppm | 1M10G7D | ||||||||||||||||||||||||||||||||||
2 | 25 | 27 | 1710.7 | 1754.3 | 0.209 | 2.5 ppm | 1M11W7D | ||||||||||||||||||||||||||||||||||
2 | 26 | 27 | 1711.5 | 1753.5 | 0.202 | 2.5 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
2 | 27 | 27 | 1711.5 | 1753.5 | 0.202 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
2 | 28 | 27 | 1712.5 | 1752.5 | 0.237 | 2.5 ppm | 4M52G7D | ||||||||||||||||||||||||||||||||||
2 | 29 | 27 | 1712.5 | 1752.5 | 0.201 | 2.5 ppm | 4M52W7D | ||||||||||||||||||||||||||||||||||
2 | 3 | 27 | 1715 | 1750 | 0.236 | 2.5 ppm | 9M08G7D | ||||||||||||||||||||||||||||||||||
2 | 31 | 27 | 1715 | 1750 | 0.198 | 2.5 ppm | 9M08W7D | ||||||||||||||||||||||||||||||||||
2 | 32 | 27 | 1717.5 | 1747.5 | 0.236 | 2.5 ppm | 13M5G7D | ||||||||||||||||||||||||||||||||||
2 | 33 | 27 | 1717.5 | 1747.5 | 0.192 | 2.5 ppm | 13M5W7D | ||||||||||||||||||||||||||||||||||
2 | 34 | 27 | 1720 | 1745 | 0.224 | 2.5 ppm | 18M5G7D | ||||||||||||||||||||||||||||||||||
2 | 35 | 27 | 1720 | 1745 | 0.2 | 2.5 ppm | 18M5W7D | ||||||||||||||||||||||||||||||||||
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
3 | 1 | 22H | 826.4 | 846.6 | 0.205 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
3 | 2 | 24E | 1852.4 | 1907.6 | 0.209 | 2.5 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
3 | 3 | 27 | 699.7 | 715.3 | 0.225 | 2.5 ppm | 1M11G7D | ||||||||||||||||||||||||||||||||||
3 | 4 | 27 | 699.7 | 715.3 | 0.192 | 2.5 ppm | 1M10W7D | ||||||||||||||||||||||||||||||||||
3 | 5 | 27 | 700.5 | 714.5 | 0.238 | 2.5 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
3 | 6 | 27 | 700.5 | 714.5 | 0.199 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
3 | 7 | 27 | 701.5 | 713.5 | 0.237 | 2.5 ppm | 4M54G7D | ||||||||||||||||||||||||||||||||||
3 | 8 | 27 | 701.5 | 713.5 | 0.201 | 2.5 ppm | 4M54W7D | ||||||||||||||||||||||||||||||||||
3 | 9 | 27 | 704 | 711 | 0.242 | 2.5 ppm | 9M12G7D | ||||||||||||||||||||||||||||||||||
3 | 1 | 27 | 704 | 711 | 0.206 | 2.5 ppm | 9M12W7D | ||||||||||||||||||||||||||||||||||
3 | 11 | 24E | 1850.7 | 1909.3 | 0.242 | 2.5 ppm | 1M10G7D | ||||||||||||||||||||||||||||||||||
3 | 12 | 24E | 1850.7 | 1909.3 | 0.2 | 2.5 ppm | 1M10W7D | ||||||||||||||||||||||||||||||||||
3 | 13 | 24E | 1851.5 | 1908.5 | 0.244 | 2.5 ppm | 2M76G7D | ||||||||||||||||||||||||||||||||||
3 | 14 | 24E | 1851.5 | 1908.5 | 0.199 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
3 | 15 | 24E | 1852.5 | 1907.5 | 0.24 | 2.5 ppm | 4M54G7D | ||||||||||||||||||||||||||||||||||
3 | 16 | 24E | 1852.5 | 1907.5 | 0.191 | 2.5 ppm | 4M54W7D | ||||||||||||||||||||||||||||||||||
3 | 17 | 24E | 1855 | 1905 | 0.244 | 2.5 ppm | 9M12G7D | ||||||||||||||||||||||||||||||||||
3 | 18 | 24E | 1855 | 1905 | 0.192 | 2.5 ppm | 9M12W7D | ||||||||||||||||||||||||||||||||||
3 | 19 | 24E | 1857.5 | 1902.5 | 0.235 | 2.5 ppm | 13M6G7D | ||||||||||||||||||||||||||||||||||
3 | 2 | 24E | 1857.5 | 1902.5 | 0.19 | 2.5 ppm | 13M6W7D | ||||||||||||||||||||||||||||||||||
3 | 21 | 24E | 1860 | 1900 | 0.234 | 2.5 ppm | 18M6G7D | ||||||||||||||||||||||||||||||||||
3 | 22 | 24E | 1860 | 1900 | 0.193 | 2.5 ppm | 18M6W7D | ||||||||||||||||||||||||||||||||||
3 | 23 | 27 | 1710.7 | 1754.3 | 0.24 | 2.5 ppm | 1M10G7D | ||||||||||||||||||||||||||||||||||
3 | 24 | 27 | 1710.7 | 1754.3 | 0.209 | 2.5 ppm | 1M11W7D | ||||||||||||||||||||||||||||||||||
3 | 25 | 27 | 1711.5 | 1753.5 | 0.202 | 2.5 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
3 | 26 | 27 | 1711.5 | 1753.5 | 0.202 | 2.5 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
3 | 27 | 27 | 1712.5 | 1752.5 | 0.237 | 2.5 ppm | 4M52G7D | ||||||||||||||||||||||||||||||||||
3 | 28 | 27 | 1712.5 | 1752.5 | 0.201 | 2.5 ppm | 4M52W7D | ||||||||||||||||||||||||||||||||||
3 | 29 | 27 | 1715 | 1750 | 0.236 | 2.5 ppm | 9M08G7D | ||||||||||||||||||||||||||||||||||
3 | 3 | 27 | 1715 | 1750 | 0.198 | 2.5 ppm | 9M08W7D | ||||||||||||||||||||||||||||||||||
3 | 31 | 27 | 1717.5 | 1747.5 | 0.235 | 2.5 ppm | 13M5G7D | ||||||||||||||||||||||||||||||||||
3 | 32 | 27 | 1717.5 | 1747.5 | 0.192 | 2.5 ppm | 13M5W7D | ||||||||||||||||||||||||||||||||||
3 | 33 | 27 | 1720 | 1745 | 0.224 | 2.5 ppm | 18M5G7D | ||||||||||||||||||||||||||||||||||
3 | 34 | 27 | 1720 | 1745 | 0.2 | 2.5 ppm | 18M5W7D |
some individual PII (Personally Identifiable Information) available on the public forms may be redacted, original source may include additional details
This product uses the FCC Data API but is not endorsed or certified by the FCC