all | frequencies |
|
|
exhibits | applications |
---|---|---|---|---|---|
manuals |
app s | submitted / available | |||||||
---|---|---|---|---|---|---|---|---|
1 2 |
|
User and Service Manual | Users Manual | 2.82 MiB | ||||
1 2 |
|
Users Manual | Users Manual | 3.60 MiB | ||||
1 2 | Cover Letter(s) | |||||||
1 2 | Cover Letter(s) | |||||||
1 2 | Cover Letter(s) | |||||||
1 2 | External Photos | |||||||
1 2 | Internal Photos | |||||||
1 2 | ID Label/Location Info | |||||||
1 2 | ID Label/Location Info | |||||||
1 2 | Test Report | |||||||
1 2 | Test Setup Photos | |||||||
1 2 | Parts List/Tune Up Info | |||||||
1 2 | Cover Letter(s) | |||||||
1 2 | Cover Letter(s) | |||||||
1 2 | RF Exposure Info |
1 2 | User and Service Manual | Users Manual | 2.82 MiB |
Xfin Blade SERVICE MANUAL XFIN-BLADE-SM Issue 3.0 February 2008 Team Simoco 2008 Team Simoco Ltd. Field House, Uttoxeter Old Road Derby DE1 1NH Tel: +44 (0) 1332 375 500 FAX: +44 (0) 1332 375 501 www.teamsimoco.com DECLARATION The performance figures quoted are subject to normal manufacturing and service tolerances. The right is reserved to alter the equipment described in this manual in the light of future technical development. COPYRIGHT All rights reserved. No part of this publication may be reproduced in any form or by any means without the prior written permission of Team Simoco Ltd. ERRORS AND OMISSIONS The usefulness of this publication depends upon the accuracy and completeness of the information contained within it. Whilst every endeavour has been made to eliminate any errors, some may still exist. It is requested that any errors or omissions noted should be reported to:
Technical Documentation Team Simoco Ltd Field House Uttoxeter Old Road Derby DE1 1NH UK Tel: +(44) 01332 375 627 E-mail: techsupport@teamsimoco.com DOCUMENT HISTORY Issue 0.1 0.2 0.3 0.4 1.0 2.0 3.0 PAGE 2 Date Sept 2005 Mar 2006 Apr 2006 Aug 2006 Nov 2006 Nov 2007 Feb 2007 Comments Skeleton document created. Draft submitted for internal review by Development. Diagrams added. Product Variants and Spares information received. Added details on PSTN & RJ45 serial ports, E&M linking corrected. Updated Test-Point information. Added Radio Frequency Hazard Information DECLARATION XFIN-BLADE-SM DECLARATION PAGE 3 WARNINGS AND CAUTIONS WARNING The Power Amplifier Module uses semiconductor devices containing Beryllium Oxide. Dust from this oxide is toxic and, if inhaled or skin contact is made, can be hazardous to health. No danger can arise from normal handling, but no attempt should be made to break open or tamper with these devices in any way. These items should not be discarded with industrial or domestic waste. To avoid RF injury, do not touch the Antenna when the Transmitter is in use. Do not operate transmitter with antenna disconnected RF burn hazard. WARNING The weight of a fully assembled Base Station in the wall mount is approx 10kg. Two people should be used to lift the unit in this form. WARNING When drilling walls, check first for any buried cables or pipes. WARNING Disconnect Mains Electricity before working on the unit with wall-mount or rack power supplies open. WARNING During disassembly and assembly, refer to the Torque Settings section in this manual. Caution Caution Preparing the radio for alignment will erase from the radio all customer PMR and Trunking configuration data (channel, signalling information etc). The only data retained by the Alignment Tool is the factory alignment data for the radio (DAC settings for TX power, front-end tuning etc). PAGE 4 WARNINGS AND CAUTIONS XFIN-BLADE-SM TABLE OF CONTENTS DECLARATION...............................................................................................................2 COPYRIGHT ...................................................................................................................2 ERRORS AND OMISSIONS............................................................................................2 DOCUMENT HISTORY...................................................................................................2 WARNINGS AND CAUTIONS.........................................................................................4 TABLE OF CONTENTS..................................................................................................5 1 INTRODUCTION...................................................................................................10 1.1 General...............................................................................................................10 2 PRODUCT CODES...............................................................................................11 2.1 Serial number ....................................................................................................11 2.1.1 Hardware Variant Code ....................................................................................11 2.1.2 MAC Address....................................................................................................11 2.1.3 Modification State .............................................................................................11 3 DESCRIPTION......................................................................................................13 3.1 Ventilation..........................................................................................................13 3.2 SRM9000 Sub-assembly...................................................................................14 3.3 Specifications....................................................................................................14 3.3.1 General .............................................................................................................14 3.3.2 Transmitter........................................................................................................15 3.3.3 Receiver............................................................................................................16 Front Panel Controls.........................................................................................16 3.4.1 LED Indicators ..................................................................................................16 3.4.2 LCD...................................................................................................................17 3.4.3 Control Knob.....................................................................................................17 3.4.4 MMI RJ45 Connector ........................................................................................18 3.5 Rear Panel Connectors.....................................................................................18 3.5.1 Tx/Rx.................................................................................................................19 3.5.2 Power................................................................................................................19 3.5.3 Fuses ................................................................................................................20 3.5.4 Ethernet ............................................................................................................20 3.5.5 RS232 Serial (D-Sub) .......................................................................................21 3.5.6 RS232 Serial (RJ45).........................................................................................21 3.4 TABLE OF CONTENTS PAGE 5 3.5.7 USB Connector .................................................................................................21 3.5.8 Line 1 & 2 (RJ45)..............................................................................................22 3.5.9 Facilities............................................................................................................22 3.5.10 PSTN Port (RJ11) .............................................................................................23 4 TECHNICAL DESCRIPTION ................................................................................25 4.1 MMI Board..........................................................................................................25 4.1.1 Description........................................................................................................26 4.2 Control Board....................................................................................................27 4.2.1 Circuit Board Layout .........................................................................................27 4.2.2 Circuit Description.............................................................................................29 4.2.2.1 LEDs .......................................................................................................29 4.2.2.2 Test Points..............................................................................................29 4.2.2.3 DSP ........................................................................................................33 4.2.2.4 Power......................................................................................................34 4.2.2.5 IXP ..........................................................................................................34 4.2.2.6 CoDec .....................................................................................................35 4.2.2.7 Audio Interface........................................................................................35 4.2.2.8 PSTN Interface .......................................................................................36 4.2.3 Links .................................................................................................................37 4.3 Receiver and Transmitter Modules..................................................................39 4.3.1 Frequency Bands..............................................................................................39 4.3.2 Receiver............................................................................................................39 4.3.2.1 Front-end Filters and Rx Front-end Amplifier .........................................39 4.3.2.2 First Mixer and IF Section.......................................................................41 4.3.2.3 Quadrature Demodulator ........................................................................41 4.3.2.4 Receiver Audio Processing.....................................................................41 4.3.3 Transmitter........................................................................................................41 4.3.3.1 Drivers and PA Stages ...........................................................................42 4.3.3.2 Tx Power Control ....................................................................................44 4.3.3.3 Antenna Changeover and Harmonic Filter .............................................44 4.3.3.4 Transmitter Audio Processing.................................................................44 4.3.4 Frequency Synthesis ........................................................................................45 4.3.4.1 General...................................................................................................45 4.3.4.2 PLL .........................................................................................................45 4.3.4.3 VCO ........................................................................................................45 4.3.4.4 Negative Bias Generator and Loop Filter ...............................................45 4.3.4.5 Phase Modulator.....................................................................................46 4.3.4.6 Reference Oscillator ...............................................................................46 4.3.5 RF Sub-Assembly Internal Control Logic..........................................................48 4.3.5.1 DSP and FPGA.......................................................................................49 4.3.5.2 DSP Clock Oscillator ..............................................................................49 4.3.6 RF Sub-Assembly Internal Memory ..................................................................49 4.3.6.1 Multiplexer ..............................................................................................49 4.3.7 RF Sub-Assembly Internal Power Supplies ......................................................50 PAGE 6 TABLE OF CONTENTS XFIN-BLADE-SM 4.3.7.1 Power On Function .................................................................................50 4.3.7.2 Power Lines ............................................................................................50 4.4 Antenna Requirements.....................................................................................52 4.5 Power supplies..................................................................................................52 4.6 Configuration ....................................................................................................52 4.7 Adjustment and Alignment...............................................................................52 5 MAINTENANCE ....................................................................................................53 5.1 Torque Settings.................................................................................................53 5.2 Disassembly ......................................................................................................53 5.2.1 To Remove the Blade from a Rack...................................................................53 5.2.2 To Open the Blade............................................................................................54 5.2.3 To Remove a Tx or Rx Assembly......................................................................54 5.2.4 To Remove the Control Board ..........................................................................55 5.2.5 To Remove the Front Assembly........................................................................55 5.2.6 To Remove the MMI Board ...............................................................................56 5.2.7 To Remove a Fan .............................................................................................56 5.3 Re-Assembly .....................................................................................................56 5.3.1 To Fit an MMI Board .........................................................................................56 5.3.2 To Fit the Front Assembly.................................................................................56 5.3.3 To Fit the Control Board ...................................................................................56 PRODUCT VARIANTS AND ACCESSORIES......................................................58 6 6.1 Variants..............................................................................................................58 6.2 Accessories.......................................................................................................58 6.2.1 TSF-ACCORD ..................................................................................................59 6.2.2 Duplexers, Combiners, Cavities, RSA Units .....................................................59 6.2.3 TSF-EARS ........................................................................................................60 6.2.4 TSF-PROG .......................................................................................................60 6.2.5 Blade Shelves...................................................................................................60 6.2.6 TSF-1BS PSUTRAY .........................................................................................60 6.2.6.1 TSF-1BS PSUTRAY Specifications........................................................60 7 SPARES................................................................................................................62 7.1 Service Concept................................................................................................62 Level-2 Spares Schedule..................................................................................63 7.2 7.2.1 XFIN BLADE (INTERNAL PSU VERSION) .......................................................63 7.2.2 Assembly Item List............................................................................................64 7.3 Warranty.............................................................................................................65 7.3.1 Service Within and Out Of Warranty ................................................................65 TABLE OF CONTENTS PAGE 7 7.3.2 Ancillary Items...................................................................................................65 7.3.3 Unpacking Equipment.......................................................................................66 7.4 Software Policy .................................................................................................66 8 LCD MENU OPERATION .....................................................................................68 8.1 Default Display ..................................................................................................68 8.2 Menu Structure..................................................................................................68 8.2.1 Alarms Menu.....................................................................................................69 8.2.2 Set IP Address ..................................................................................................69 8.2.3 Set Position in Site............................................................................................69 8.2.4 Set Site ID.........................................................................................................69 8.2.5 Set System ID ...................................................................................................69 8.2.6 Enable Screen Saver ........................................................................................69 8.2.7 Test Menu .........................................................................................................69 8.2.8 Exit....................................................................................................................69 PROGRAMMER GUIDE........................................................................................70 9 9.1 Getting Started ..................................................................................................70 9.1.1 Main Screen......................................................................................................70 9.2 Database ............................................................................................................70 9.2.1 Creating a New Database.................................................................................71 9.2.2 Opening a Database.........................................................................................71 9.3 Communications Settings................................................................................71 9.3.1 Connection Type...............................................................................................71 9.3.2 Serial Communications .....................................................................................71 9.3.3 Ethernet Communications.................................................................................72 9.3.4 Open Comms ....................................................................................................72 9.4 State ...................................................................................................................72 9.5 Area Configuration............................................................................................73 9.5.1 Edit....................................................................................................................73 9.5.2 Add....................................................................................................................73 9.5.3 Delete ...............................................................................................................73 9.5.4 Accept/Send......................................................................................................73 9.5.5 Get Record........................................................................................................74 9.5.6 Send Configuration ...........................................................................................74 9.5.7 Get Configuration..............................................................................................74 9.5.8 Reset Configuration ..........................................................................................74 9.5.9 Navigation Buttons............................................................................................74 A. GLOSSARY AND ABBREVIATIONS ...................................................................77 PAGE 8 TABLE OF CONTENTS XFIN-BLADE-SM B. CONTROL CARD BLOCK DIAGRAM..................................................................78 C. RADIO FREQUENCY HAZARD INFORMATION .................................................79 TABLE OF CONTENTS PAGE 9 1 INTRODUCTION 1.1 GENERAL Figure 1.1 - Front view of the Xfin Blade. Brief Description: The Xfin Blade is a 1U trunking system with an integrated basestation and the capability to provide a control and/or traffic channel. It incorporates the established MPT1327 trunking standard with next generation hardware and VoIP technology. A trunked site consists of a number of Blade units which are inter-connected using standard CAT5 Ethernet cable. PAGE 10 INTRODUCTION XFIN-BLADE-SM 2 PRODUCT CODES The following information is displayed on the Type Approval Label located on the chassis behind the speaker housing. 2.1 SERIAL NUMBER The product serial number is broken down as follows:
Digits 1-3 Hardware configuration; XBI = Xfin 25W internal PSU, XB0 = Xfin 25W external PSU, XBP = Power Blade 100W Hardware version; P = prototype, 1-9, A-Z = production releases Software version; P = prototype, 1-9, A-Z = production releases Reserved Tx & Rx frequency band designation (alphanumeric) 4 5 6-7 8-9 10-11 Year of manufacture 12-13 Week of manufacture 14-16 Unique serial number 2.1.1 Hardware Variant Code The hardware code is a 5-digit code consisting of:
Digits 1-3 4-5 Hardware configuration; XBI = Xfin 25W internal PSU, XB0 = Xfin 25W external PSU, XBP = Power Blade 100W Tx & Rx frequency band designation (alphanumeric) 2.1.2 MAC Address Each Blade is assigned a unique 12-character alphanumeric MAC address. 2.1.3 Modification State Where changes are made to hardware or software between major releases, this will be recorded on the Mod State tick-boxes (A D) on the Type Approval Label. PRODUCT CODES PAGE 11 Receiver Transmitter Control Board removed High-power Amplifier or Integrated PSU Option Figure 3.1 - Layout of the Blade with the top lid 3 DESCRIPTION The Blade is a 1U high by 19 wide rack-mountable unit containing two SRM9000 sub-assemblies, a control card, and a fan bulkhead which mates with the angled front panel and MMI card. There is also provision for fitting a high power amplifier or integrated power supply option. 3.1 VENTILATION In order to provide full-power continuous operation in any orientation and in a 1U envelope, the Blade uses forced air-cooling. A pair of fans draws air in from an air intake located underneath the front lip of the angled front panel. This air is compressed by a baffle that directs the airflow underneath the heatsink of the SRM9000 sub assemblies. A second pair of fans is used for the high-power amplifier option if fitted. Fans are located to maximise the cooling for the transmitting module. Air is exhausted through a grilled area on the rear panel immediately below the electrical connectors. Vent holes in the internal baffle allow a small amount of air to bleed diagonally through the top section of the chassis to ensure that hot spots do not form on the component side of the sub-assemblies. The fans are mounted in a bulkhead located immediately behind the front panel. The front panel, MMI board and fan bulkhead are separately assembled and removed from the unit as sub-assemblies. The fans, loudspeaker and indicator LEDs are all controlled from the MMI PCB that fits into this sub-assembly. The fans are not only speed controlled to minimise noise and wear, but their speed is also monitored to provide early warning of failure. In normal operation, the fans are turned on to full speed to minimise any possibility of a stall, the speed is then turned down based upon equipment temperature. Even if the temperature is very low, fans are always kept running at a low speed. Temperature is sensed from a Thermistor located on the underside of the control board. This Thermistor protrudes into the airflow from the transmit PA module. When installing the Blade it is important to ensure that adequate ventilation is provided for each base station unit. A minimum free-area of 72cm2 is recommended per base station at the inlet AND at the outlet. This should be increased if air has to be drawn through ducts or has to be deflected around corners. Noise and dust build up can be reduced by keeping cabling and other obstructions out of the main airflows. There are no dust filters fitted in this product. If it is to be used in very dirty environments, then additional steps should be taken to prevent ingress of dust as this will affect thermal performance. Filters should only be used in external cabinets if they can be regularly maintained. 3.2 SRM9000 SUB-ASSEMBLY The RF performance of this product is derived from a pair of SRM9000 RF PCBs mounted on a Heatsink sub-assembly that is designed to permit continuous operation at full power. The sub-assembly also provides RF screening, so it is important that it is accurately assembled and reassembled. The sub-assembly has a plate attached to the rear edge with two quarter-turn fasteners for rapid removal. The unit is retained in the Blade chassis by the front edge of the Heatsink that inserts underneath the fan baffle, the rear of the subassembly is held in place by the quick release fasteners. These units are electrically identical to SRM9000 and are also fully interchangeable in the 25W power group (the Transmit module is different for the 100W systems). Control is provided via the 26-way ribbon connector. Power is supplied via the DB-15 connector and RF signals are coupled to the BNC sockets with double-screened cables. 3.3 SPECIFICATIONS 3.3.1 General Channel Bandwidth Modulation 12.5kHz (11K0F3EJN), 20kHz (14K0F3EJN) or 25kHz
(16K0F3EJN) selectable per channel Freq. F3E (voice) pre-emphasised/flat, or FFSK data (1200 or 2400bps) E0: 66-88MHz. KM: 208-245MHz. TK: 400-450MHz. WR: 470-530MHz. 2.0ppm
-25C to +55C Operating (Full Spec.) -40C to +80C Storage 2 x 50W female N-type AC: 136-174MHz. R0: 310-350MHz. TU: 400-480MHz K1: 174-208MHz. R1: 335-375MHz. UW: 440-500MHz. IP20 ingress protection, Humidity <95% non-condensing DESCRIPTION Frequency Bands Stability Temperature Antenna Connect Environmental PAGE 14 Inputs/Outputs Type Approval Dimensions
(In Wall Mount) Weight XFIN-BLADE-SM Serial interface with 1x audio connection (RJ45 front panel) 2x line/audio (2/4-wire) connections with E&M signalling (2x RJ45 with internal shield) Programmable facilities connector (37 way D-type) 2x RS232 serial connections (9 way D-type, RJ45 with internal shield) Ethernet IP interface (10/100 base-T magnetic RJ45 with external shield) USB connector (Type-B USB Socket) PSTN connector (6/4 RJ-11 socket) Power connector (5 Pin, 25 D-shell) CE Type approvals to R&TTE Directive 1999/05/EC:
EN300-086 Radio, EN300-113 Data, EN301-489-05 EMC, EN300-
219 Signal, EN60950 Safety, TBR15, 17 and 21 Line 44mm(1U) High x 437mm Wide x 450mm Deep (Excluding cables and ears) 125mm High x 465mm Wide x 470mm Deep 6.95 kg 3.3.2 Transmitter 25W Transmit Power 1W to 25W in steps 2 levels (high/low), selectable per channel Tx Current Consumption Typical: 25W: 7A @13.6V (20C) Max: 25W: 10A @13.6V + 10.0A @27.3V (fans & audio on maximum) 100%
+1db to 3db of pre-emphasised 300 to 3000Hz on 25kHz channel, 300 to 2550Hz on 12.5kHz channel Duty Cycle Audio Distortion <5% at 1kHz, 60% deviation Audio Frequency Response Hum and Noise Transmit Rise Time
>40db (12.5kHz), 45db (25kHz)
<25ms 100W Transmit Power 10W to 100W in steps, selectable per channel DESCRIPTION PAGE 15 Tx Current Consumption Typical: 100W: 5.7A @13.6V + 6.0A @27.3V (20C) Max: 100W: 8.85A @13.6V + 10.0A @27.3V (fans & audio on maximum) 100%
+1db to 3db of pre-emphasised 300 to 3000Hz on 25kHz channel, 300 to 2550Hz on 12.5kHz channel Duty Cycle Audio Distortion <5% at 1kHz, 60% deviation Audio Frequency Response Hum and Noise Transmit Rise Time
>40db (12.5kHz), 45db (25kHz)
<25ms 3.3.3 Receiver Sensitivity Voice: 12db SINAD for 0.3mVpd (typically >20db) for 25kHz channel. Data: typical FFSK performance for <10-2 BER (<20%MER):
0.3mVpd 1200 baud in 12.5kHz & 1200/2400 baud in 25 kHz, 0.5mVpd 2400 baud in 12.5kHz channel. [Ref: EN300-113-1:9.1]
Typical: 1.0A (20C) Max: 1.55A (fans & audio on maximum)
>73db (25kHz), >63db (12.5kHz) Rx Current Consumption Selectivity Intermodulation >70db (ETSI method) Audio Response 3dB of de-emphasised 300 to 3000Hz with CTCSS Audio Output Blocking Hum and Noise 2W rms internal monitor speaker
>95dB at 1Mhz
>40dB (12.5kHz) CCITT weighted 3.4 FRONT PANEL CONTROLS 3.4.1 LED Indicators On the front of the Blade there are the following 5 LED indicators (from left to right):
Legend Colour Green Power Tx Red Yellow Rx Orange CC Alm Red PAGE 16 Description Indicates presence of 3.3V DC Indicates unit is keyed up Indicates RF signal received Control Channel Activity Alarm indicator access LCD alarms menu or connect PC to diagnose DESCRIPTION XFIN-BLADE-SM 3.4.2 LCD On the left side of the front panel is an LCD (Liquid Crystal Display) 2-by-20 Character Display. It indicates channel (control/traffic) and network status (master/slave). It also indicates volume level for the internal monitor speaker and presents a menu system. See the LCD Menu Operation section later in the manual. 3.4.3 Control Knob The control knob is used in conjunction with the LCD Display to operate the menu system and provide volume control. DESCRIPTION PAGE 17 3.4.4 MMI RJ45 Connector This is an RJ45 connector located on the left side of the angled front panel. It offers a direct UART interface, a microphone input channel and an audio output channel. The pinout is listed below (where for the purpose of this table, pin 1 is the left-most pin when looking into the RJ45 socket). Pin Function 1 Tx-Data 2 Rx-Data Pin Function 3 N/C 4 Mic Gnd Pin Function 5 6
+Vout Audio Out Pin Function 7 Gnd 8 Audio In 3.5 REAR PANEL CONNECTORS Ethernet GND Power Tx USB Serial Facilities Line 1 2 PSTN Rx Figure 3.2 - Layout of the Xfin Blade rear panel PAGE 18 DESCRIPTION XFIN-BLADE-SM Figure 3.3 View of the Xfin Blade rear panel. 3.5.1 Tx/Rx The antenna connections on the Blade are provided with 50W female N-type sockets. Mating connectors should be galvanically compatible with nickel outer and gold centre pin to minimise passive inter-modulation. A minimum of 85dB transmit-receive isolation should be provided by the antenna system and associated filters. It is recommended that a good quality flexible co-axial cable is used, e.g. with double-
screening braid and multi-strand copper inner. 3.5.2 Power This is a D-type housing with 5 stud-pin locations. From left to right (looking at the rear panel) they are:
DESCRIPTION PAGE 19 Pin Description 1 Power amp (option). +24VDC
(nom) Power amp (option). DC ground Chassis Ground
+12VDC(nom) input 0VDC input 2 3 4 5 1 5 Notes:
12VDC nominal is normally supplied with 13.6VDC for battery float charge reasons. 24VDC nominal is normally supplied with 27.3VDC for battery float charge reasons. 3.5.3 Fuses Fuse F1 on the fuse-board is a 2A quick-blow, 20 x 5mm component and protects the 12V line to the MMI PCB. Fuse F2 on the fuse-board is a 10A quick-blow, 20 x 5mm component and protects the 24V line to the Power Amplifier, if fitted Fuse F5 on the Xfin Control Card is a 2A quick-blow, 20 x 5mm component and protects the 12V line to the PCB. In event of failure, the reason for the failure should be investigated prior to replacement. The fuse should only be replaced with a correctly specified component. 3.5.4 Ethernet This is a 10/100 base-T RJ45 connection. This is a switch (not a NIC) configuration care should be taken to use the correct cable (crossover or straight-through) when connecting to a network. The use of shielded cables is recommended, especially for VHF installations. The two indicator LEDs, integrated into the connector, show 100Mbps bandwidth detection and traffic activity. A third LED, on the Control Card shows if a connection is present. 1 8 Pin Description 1 2 3 4 5 6 Eth Rx-Data, balanced input 1 Eth Rx-Data, balanced input 2 Eth Tx-Data, balanced output 1 NC NC Eth Tx-Data, balanced output 2 PAGE 20 DESCRIPTION 7 8 NC NC XFIN-BLADE-SM 3.5.5 RS232 Serial (D-Sub) This is a standard DB-9 female RS-232 socket with the following pins connected for DTE operation:
5 9 1 6 Pin Description 1 NC 2 Tx Data, output 3 Rx Data, input 4 NC 5 GND Pin Description 6 NC 7 CTS, input 8 RTS, output 9 NC 3.5.6 RS232 Serial (RJ45) This is a standard RJ45 socket with the following pins connected for DTE operation:
Pin Description 1 NC 2 Tx Data, output 3 Rx Data, input 4 NC 5 GND Pin Description 6 NC 7 CTS, input 8 RTS, output 1 8 3.5.7 USB Connector The IXP420 processor's USB is integrated, USB 1.1-compliant and supports all standard device requests issued by any USB host controller. It is an USB device-only controller. The interface supports full-speed operation and 16 endpoints and includes an integrated transceiver. There are six isochronous endpoints (three input and three output), one control endpoint, three interrupt endpoints, six bulk endpoints (three input and three output). The connector is a standard 4-pin socket (pin 1 is the bus voltage rail, 2 & 3 are the positive and negative signals of the differential USB receiver/driver respectively and pin 4 is ground). Note: ensure that the current Blade software supports this interface before attempting to use it DESCRIPTION PAGE 21 3.5.8 Line 1 & 2 (RJ45) Each of these sockets provides a pair of barriered line audio connections via RJ45 connectors. Opto-isolated E&M signalling is also available on these connectors. A pair of lines is provided so that the unit can support active line combining. To provide DC Ground and Bias for E&M Signalling Where line barrier is not required, two fuses may be fitted in fuse-holders F3 and F4 of the control PCB (20 x 5mm, 50mA) to provide DC ground and bias for E&M signalling. When the following is performed, the line barrier is breached and the equipment must NOT be connected to Public Networks. Caution 1 8 Pin Description 1 2 3 4 5 6 7 8 E+
M-
4 wire Tx 4 wire Rx or 2 wire Tx/Rx 4 wire Rx or 2 wire Tx/Rx 4 wire Tx M+
E-
3.5.9 Facilities This 37-way D-type can be programmed for any combination of digital inputs and outputs. Audio signals are present on certain pins, these require an adapter cable in order to re-route signals and become plug compatible with certain products. 19 37 1 20 Pin Description 1 Pin Description 14 Tx+ line connection A 0v Rx+ line connection A Rx+ line connection B Tx+ line connection B 2 3 4 5 CTCSS decode defeat RSSI O/P Channel line C6
(MSB) Channel line C4 Channel line C2 15 16 17 18 Pin Description 27 I/O 5 28 29 30 31 I/O 6 Talkthrough command Squelch defeat command I/O 7 PAGE 22 DESCRIPTION XFIN-BLADE-SM 6 7 8 9 10 11 12 13 Tx- line connection B I/O 2 I/O 4
+13.6v unswitched Tx key command Alarm 1 0v Alarm 2 19 20 21 22 23 24 25 26 Channel line C0
(LSB) Tx- line connection A Aux Tx Rx- line connection A Rx- line connection B Squelch I/O 1 I/O 3 Aux Rx I/O 8 Analogue Out Channel line C5 Channel line C3 Channel line C1 32 33 34 35 36 37 3.5.10 PSTN Port (RJ11) This is a 6/4 RJ11 socket with the following pins connected for PSTN operation:
Pin Description 6 NC 1 6 Pin Description 1 NC 2 NC 3 Tip (Snoop+) 4 Ring (Ring-) 5 NC DESCRIPTION PAGE 23 Power Connector 4 TECHNICAL DESCRIPTION 4.1 MMI BOARD Fan Connectors MMI Connector LEDs Figure 4.1 -
MMI Board Layout Control Knob LCD Display Handset Jack 4.1.1 Description The purpose of the MMI board is to provide the Man Machine Interface between the control card and the user. The MMI board contains 5 LEDs for user diagnostics. It contains an LCD for displaying an interactive menu, which is accessed via a control knob. An audio amplifier is provided to drive a loud speaker at up to 2W, with volume adjustment via the control knob. An RJ45 interface for a serial port is also present. The MMI board has a secondary function of providing the interface and drivers for the fans. Connection to the main control board is via a 14-way ribbon cable. PAGE 26 Figure 4.2 Block Diagram of MMI Board TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.2 CONTROL BOARD 4.2.1 Circuit Board Layout TECHNICAL DESCRIPTION PAGE 27 Figure 4.3 -
Control Board Layout with Main Sections Labelled PAGE 28 TECHNICAL DESCRIPTION 4.2.2 Circuit Description XFIN-BLADE-SM I/O IXP DSP SRM CPLD Control Ethernet Interface Analogue Digital I/O Digital I/O Serial Port Serial Control See the Appendix for a more detailed block diagram representing the control card. 4.2.2.1 LEDs LED DL1 indicates Ethernet connection (LINK). LED DL2 indicates the Flash device at U46 is being written to. 4.2.2.2 Test Points Figure 4.4 Block Diagram of Control Board BS Audio 2 Line Barrier Line Barrier BS Audio 1 Line Audio 1 Line Audio 2 CODECs TECHNICAL DESCRIPTION PAGE 29 Test Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Monitors Signal Type 3.3V Digital 3.3V Digital D.C. Clock Signal 3.3V Digital 3.3V Digital 3.3V Digital Clock Signal 3.3V Digital 3.3V Digital Clock Signal 3.3V Digital 3.3V Digital Clock Signal 3.3V Digital 3.3V Digital Active-Low INVALID Pin on RS232 chip (U1) Active-Low INVALID Pin on RS232 chip (U2) Transmit Centre-Tap on Magnetic RJ45 (P3) Output 4 of Clock Driver (U12) Bank B Inverted Output of Digital I/O Shift Register (U10) Inverted Output of Digital I/O Shift Register (U17) Inverted Output of Digital I/O Shift Register (U11) Output 4 of Clock Driver (U12) Bank B DSP PF10 IXP_IRQA output from CPLD (U22) IXP_CLK_CPLD Signal to CPLD (U22) IXP_IRQB output from CPLD (U22) GPIO_IN4 Signal to CPLD (U22) Feedback to Clock Driver (U12) SPI_MISO signal to IXP GPIO(2) TX_DATA signal for High Speed Serial Port 1 on the IXP
(U34) RX_CLK signal for High Speed Serial Port 0 on the IXP (U34) 3.3V Digital 3.3V Digital SPI_CS_ADC signal from IXP GPIO(9) GPIO_IN7 Signal to CPLD (U22) 3.3V Digital 3.3V Digital IXP_RD_N Signal to CPLD (U22) I2C CLK (SCL) 3.3V Digital SPI_CS_DS from IXP GPIO(3) 3.3V Digital 3.3V Digital RX_DATA signal for High Speed Serial Port 1 on the IXP
(U34) RTS for DSP Serial Port from DSP PF3 Off-Hook signal OH_N from DSP PF8 SPI_CS_DM Spare I/O Pin CIO2 on CPLD (U22) JTAG TDO Signal from CPLD (U22) TX_FRAME signal for High Speed Serial Port 1 on the IXP
(U34) TX_CLK signal for High Speed Serial Port 0 on the IXP (U34) 3.3V Digital RX_CLK signal for High Speed Serial Port 1 on the IXP (U34) 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital PAGE 30 TECHNICAL DESCRIPTION XFIN-BLADE-SM 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital PF1 on the DSP (U28) I2C Data (SDA) RX_FRAME signal for High Speed Serial Port 1 on the IXP
(U34) Active-Low RING signal (indicating half-wave ringing detect output signal) from PSTN interface (U7) GPIO_IN6 Signal to CPLD (U22) SPI_CS_DAC from IXP GPIO(10) RX_FRAME signal for High Speed Serial Port 0 on the IXP
(U34) TX_CLK signal for High Speed Serial Port 1 on the IXP (U34) 3.3V Digital RX_DATA signal for High Speed Serial Port 0 on the IXP 3.3V Digital
(U34) 3.3V Digital DSP Memory Select DSP_AMS3_N to CPLD (U22) Spare I/O Pin CIO3 on CPLD (U22) 3.3V Digital TDI JTAG Signal to CPLD (U22), connected to IXP GPIO(11) 3.3V Digital 3.3V Digital TX_FRAME signal for High Speed Serial Port 0 on the IXP
(U34) DSP_IRQA output from CPLD (U22) GPIO_IN5 to CPLD (U22) TMS JTAG Signal to CPLD (U22) TX_DATA signal for High Speed Serial Port 0 on the IXP
(U34) ENET0_INT_N to IXP GPIO(4) Audio Output 1 from Codec C2 (U52) after passing through the 1st Op-Amp stage DSP_IRQB output from CPLD (U22) TCK JTAG Signal to CPLD (U22) CPLDI_CS_N DSP_IRQA output from CPLD (U22) GPIO_IN3 to CPLD (U22) GPIO_IN2 to CPLD (U22) Audio Input 2 to Codec C2 (U52) prior to being converted from single-ended to differential IXP Write Strobe IXP_WR_N Active-Low Global Reset Anti-Aliasing Filter Selector, generated by DSP PF11 SPI_MOSI generated by IXP GPIO12 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital Audio Signal 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital Audio Signal TECHNICAL DESCRIPTION PAGE 31 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 Audio Input 1 to Codec C2 (U52) prior to being converted from single-ended to differential SPI_CLK 5V Bias for 10V Op Amps Audio Output 2 from Codec C2 (U52) after passing through 1st Op-Amp stage Analogue 3.3V A3V3 Analogue Ground AGND Analogue 2.5V Supply Rail (Bias for 5V Op Amps and ADC) A2V5 Codec Select Strobe CODSE generated by DSP PF4 Digital 5V supply rail (used by 3.3V Switched Mode Power Supply) 5V0D Analogue 5V Supply Rail (used by ADC and 5V Op Amps) A5V Codec Reset CODRST_N generated by DSP PF5 Digital Ground DGND Pin 23 of P5 Rx Radio Header Pin 21 of P5 Rx Radio Header Pin 3 of P5 Rx Radio Header I2C Data (I2C_SDA) Analogue 2.5V Supply Rail (Bias for 5V Op Amps and ADC) A2V5 Digital Ground DGND Pin 23 of P6 Tx Radio Header Pin 21 of P6 Tx Radio Header Pin 3 of P6 Tx Radio Header TX_PTT inputted to DSP PF15 I2C CLK (SCL) Pin 20 of P5 Rx Radio Header 3.3V Digital Voltage Supply 3V3 RX_EXTOUT inputted to DSP PF9 Pin 6 of P6 Tx Radio Header Digital Ground DGND PSTN Tx+
Network Processor Oscillator Tri-State Enable PSTN Rx-
PSTN Tx-
Audio Signal 3.3V Digital D.C. Audio Signal D.C. D.C. D.C. 3.3V Digital D.C. D.C. 3.3V Digital D.C. 3.3V Digital D.C. D.C. 3.3V Digital 3.3V Digital D.C. 3.3V Digital D.C. Audio Signal 3.3V Digital Audio Signal Audio Signal PAGE 32 TECHNICAL DESCRIPTION 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 PSTN Rx+
Auxiliary Audio Rx Auxiliary Audio Tx Mic Rx Speaker Tx+
Speaker Tx-
Handset Rx Handset Tx 10V Voltage Supply 3.3V Digital Voltage Supply Codec 0, Output 1 (Positive) 1.3V Digital Voltage Supply 1V3 Filtered Input Voltage Supply VINF Input Voltage Supply VIN 1.2V Digital Voltage Supply 1V2 3.3V Analogue Voltage Supply XFIN-BLADE-SM Audio Signal Audio Signal Audio Signal Audio Signal Audio Signal Audio Signal Audio Signal Audio Signal D.C. D.C. Audio Signal D.C. D.C. D.C. D.C. D.C. 4.2.2.3 DSP The DSP on the Xfin control card is a Blackfin device manufactured by Analog Devices; it runs at speeds of up to 500 MHz. The DSP is responsible for all audio processing including mixing, FFSK encoding/decoding, DTMF encoding/decoding, supervisory tone generation, audio emphasis and speech processing for VOIP between Blades. Booting The DSP downloads the application code from the IXP Network Processor at start up and runs the software entirely in internal memory. RS232 Serial Interface (Rear RJ-45) The rear of the Blade contains a standard RJ-45 Serial connection in order that an engineer may connect a PC to the DSP via an RJ-45 to DB-9 cable. Debug commands may then be issued to the DSP for diagnostic information. CPLD Interface Communications between the IXP Network Processor and the DSP are performed by connecting the data bus on the IXP to the host interface (Lattice LC256V-75T100 CPLD) connecting to the DSP. The IXP writes to the host interface, triggering a DMA on the DSP to copy the data to a buffer. After a packet has been sent, the DMA on the DSP copies data from an outgoing buffer to the host interface port that is read by the IXP. This enables high-speed communications without impacting the performance of the DSP. TECHNICAL DESCRIPTION PAGE 33 4.2.2.4 Power The control board requires a 12V 2000ma supply. Linear regulators are provided to reduce the input voltage down to 10V and 5V for the audio circuits. The input voltage supply is also regulated down to 3.3V for the digital logic via a switched mode power supply. The 1.3V supply for the IXP processor core is generated by a regulator off the 3.3V rail. The 1.2V supply for the DSP core is generated by a diode (controlled by the DSP) off the 3.3V rail. 4.2.2.5 IXP Description The main processor is an IXP42x processor manufactured by INTEL. It consists of a central ARM based processor supported by separate network processor engines for supporting the Ethernet and USB ports. The IXP runs the application code under MontaVista Linux. The application code consists of Trunked Site Control, Inter-Blade Communications, Site Configuration, Fan Control and the LCD menu system. The network processor also provides support to the DSP. The IXP is connected to external flash memory that stores the IXP software. Reset of the IXP is performed reset circuitry monitoring voltage supplies. Watchdog The IXP processor has its own internal watchdog. Fan Control The IXP performs fan control via Maxim Fan Regulator devices, monitoring the temperature of the airflow from the transmitter module using a thermistor (RT1). If the temperature is too high or low, the speed of the fans is adjusted accordingly. Fans are not allowed to stop during normal operation. Each fan generates a tachometer output allowing software to detect a fan failure or potential failure by monitoring fan speed. If one fan fails the speed of the second fan will be increased to compensate. Analogue Outputs Two analogue outputs are provided by a dual-channel Digital to Analogue Converter
(U41). They provide analogue outputs to the Facilities Connector to output, for example, the RSSI level. Analogue Inputs The ADC (U56) has eight analogue inputs available, which are currently used to provide voltage monitoring of the thermistor and the 12V unregulated supply, receive inputs from the PA header and provide feedback of the analogue outputs. Digital I/O A set of shift registers (U10, U11, U15, U16 and U17) is controlled by the IXP via the CPLD to provide digital I/O to the Facilities Connector as well as internal controls. Ethernet interface PAGE 34 TECHNICAL DESCRIPTION XFIN-BLADE-SM The IXP controls an LXT971 PHY chip (U20) that provides a 10/100 Base-T Ethernet interface. The PHY is connected to an RJ-45 socket with built-in magnetics; the socket also presents two external LEDs which are configured to indicate activity and 10/100 status. RS232 Serial Interface (DB-9) The rear of the Blade contains a standard 9-way Serial connection in order that a straight through cable may be used to connect a PC to the IXP. UART Serial Interfaces (Front Panel RJ-45) The IXP presents a serial port interface to the RJ-45 port in the front panel. 4.2.2.6 CoDec Audio received from either or both of the line ports and the PSTN interface is fed into a chain of 3x AD73322L codecs (U52, U53 and U54) that is connected to the DSP via its SPORT (Serial PORT) interface serial link. The DSP performs audio signalling to the line equipment or patches the audio to the radio module. Handset audio is fed via a codec (U53) into the DSP allowing it to be mixed to line or the radio modules under software control. Audio is also fed to the speaker on the front panel. The codec contains built-in analogue gain adjustment under software control. 4.2.2.7 Audio Interface General External audio equipment is connected to either of the two independent audio ports which are presented barriered on the RJ45 connectors, and un-barriered on the 37-way Facilities Connector. Two and Four Wire The barriered connections are link selectable as either two or four wire. In two-wire mode the balance of the hybrid can be set manually by moving LN18 (LN16 for port 2) to position 2-3. If a test tone is generated to line, the reflected audio can be monitored on TP57 (TP62 for port 2) and variable resistor R128 (R135 for port 2) can be adjusted to give the minimum level. At the time of configuration, the audio levels of the line ports must be set for optimal performance. In line-to-air mode, it must be possible for a -10dBm signal to generate a 2.5kHz (full-scale) deviation. In loopback mode, an undistorted signal up to -10dBm should be re-outputted with unity gain; this can be configured by inputting a -14.4dBm signal (equivalent to 1.5kHz/60% deviation over air) into the line port and altering the gain level until an equivalent -14.4dBm signal is seen at the output. E & M The control board contains opto-isolated digital inputs (U9, U14) and outputs (U8, U13). In order to support local connections where an external bias voltage is not present, Fuse-
TECHNICAL DESCRIPTION PAGE 35 3000 Vrms rated isolation voltage; 2000V/s rated surge rise time. links F3 and F4 can be fitted to provide bias volts. This allows the unit to use DC signalling. 4.2.2.8 PSTN Interface A Clare DAA chip (U7) provides a PSTN interface. An audio channel links the telephone port to a codec (U54). At the time of configuration, the audio levels of the PSTN interface should be set for optimal transmission and reception. PSTN Interface Specifications:
Isolation Characteristics Continuous Output Current Ringing Signal Detect Level Frequency Response Ringer Equivalence Return Loss Insertion Loss Tx/Rx Level 5 Vrms (min for 68Hz applied to tip and ring); 28 Vrms (min for 15Hz applied across tip and ring). 30 to 4000Hz (166Hz to 4000Hz for Snoop Circuit). 26 dB (typical, into 600 at 1800Hz).
-0.4dB to 0.4dB (Tx and Rx, 30 to 4000Hz). 2.2Vp-p (max) for a single-tone sine wave. 130 mA (max where Rzdc = 8.2). 0.01B REN. PAGE 36 TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.2.3 Links For Fuse Links F3 and F4, see E & M above. Default Link In LN1 Out LN2 In Out LN3 In Out LN4 In Out LN5 In LN6 Out In Out LN7 In LN8 Out In Out LN9 In Out LN10 In Out Remarks Line 2 M-Wire bias GND -
requires F3 fit No bias - barrier is not breached Line 1 M-Wire bias GND -
requires F3 fit No bias - barrier is not breached Line 2 E-Wire +V Bias (input supply volts) - requires F4 fit No bias - barrier is not breached Line 1 E-Wire +V Bias (input supply volts) - requires F4 fit No bias - barrier is not breached Capacitor link for Line 1 UK Complex Impedance Select Line 1 Four-Wire RX Impedance Enable Line 1 Two-Wire Line 1 UK Complex Impedance Select Line 1 Two-Wire 600R Impedance select Line 2 Complex Impedance Hybrid Balance Capacitor link for Line 2 UK Complex Impedance Select
Link LN11 In Out Remarks Line 2 Two-Wire 600R Impedance select LN12 In Out Line 2 UK Complex Impedance select LN13 In Out Line 2 Four-Wire RX Impedance Enable Line 2 Two-Wire LN14 In Out Line 2 Complex Imped. Hybrid Balance LN15 1 - 2 Line 1 Four-Wire Mode LN16 2 - 3 1 - 2 2 - 3 LN17 1 - 2 LN18 2 - 3 1 - 2 2 - 3 Line 1 Two-Wire Mode Line 2 Two-Wire 600R Imped. Hybrid Balance Line 2 Adjustable Hybrid Balance Line 2 Four-Wire Mode Line 2 Two-Wire Mode Line 1 Two-Wire 600R Imped. Hybrid Balance Line 1 Adjustable Hybrid Balance Default
Note: Unless specifically ordered otherwise, the Control Board is supplied in the default configuration shown in this table.
TECHNICAL DESCRIPTION PAGE 37 PAGE 38 TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.3 RECEIVER AND TRANSMITTER MODULES 4.3.1 Frequency Bands The Blade is supplied with a matched pair of radio sub-assemblies fitted. The designated frequency bands are:
66 - 88 MHz E0 Band 136 - 174 MHz AC Band 174 - 208 MHz K1 Band 208 - 245 MHz KM Band 310 - 350 MHz R0 Band 335 - 375 MHz R1 Band TK Band 400 - 450 MHz 400 - 480 MHz TU Band 440 - 500 MHz UW Band 470 - 530 MHz WR Band The following text refers to the components and circuits within the RF sub-assemblies only. For additional information, refer to the SRM9000 Service Manual [1]. The Rx and Tx Modules are equivalent and interchangeable for a given power classification (25W or 100W). They are connected to the Control Board via a 26-way Ribbon Cable that carries analogue audio, digital audio and control signals. Power connections are made via a 15-way, D-type connector and RF connections are made via BNC sockets. RF connections are taken to the rear of the Blade via double-
screened cables terminated with female N-types. 4.3.2 Receiver Refer to Figure 3.5. 4.3.2.1 Front-end Filters and Rx Front-end Amplifier The receiver input signal from the antenna passes through the antenna filter comprising L10, L11, L12 and associated tuning capacitors. With a transceiver module in receive mode, diodes D3, D4 and D5 in the antenna switch are reverse biased allowing the receiver input signal to be coupled through to the front-end with minimal loss. The overall insertion loss of the antenna filter and switch is approximately 0.8dB. Front-end selectivity is provided by varactor tuned bandpass filters at the input and output of the RF amplifier. Front-end tuning voltages are derived from the alignment data stored in the radio. The DSP processes this data to optimise front-end tuning relative to the programmed channel frequencies that may be changed at any time without re-aligning the radio. To achieve the required varactor tuning range an arrangement of positive and negative bias power supplies is used to provide a total bias across the varactors of up to 14.0VDC. A fixed 2.5V positive bias derived from the 5.0V supply and voltage divider R425/426 is applied to the cathodes of the varactor diodes. The negative bias supply originates at the DSP/FPGA as a composite digital tuning signal (FE TUNE) containing the data for the four front-end tuning values TUNE 1 to 4 for the particular channel frequency selected. The level is dependent on channel frequency and tuning and varies between +0.1 and
+3.0V. This signal then passes through buffer U901A and level translator Q900 to Q903 where it is converted to a high level (-0.5 to -11.5V) negative equivalent of the original signal. TECHNICAL DESCRIPTION PAGE 39 l i i i i
l l i
I I
. I
o t r o o T F x T Q Q o t C S O m o r F D O M m o r F 1 0 7 U 2 0 9 U w S w S r e f f u B h c t i h c t i O
. L n I o d u A P C X U A s r e t l i 6 1 _ 0 0 0 9 C G A f e R C F A 1 0 4 U 1 0 7 U 0 0 8 U o d u A c M 2 0 4 Q 1 0 4 Q 2 1 8 Q 1 D O M X T r e f f u B r e x e p i t l u M F A x R O C V X T o T p m A F e o P
4 B 3 0 1 U B 1 0 9 U C 3 0 1 U o d u A n o i t p O H T N Y S z H M 5 4 z H M 0 9 C E D O C p m A c M F A x T
x R 2 0 4
1 0 4 Z P S D A G P F m o r F C A D C D A r o t a u d o m e D The -12.0V rail of the level translator is generated by U300B/C with D304 to D306 providing the required voltage multiplier effect. The high level negative signal is then split into the four individual front-end negative DC values under software control by multiplexer U902 and associated storage capacitors C904 to C907 before being applied to the anodes of the front-end tuning varactors. r e s s e h t n y S
1 1 8
0 1 8 Q s s a P d n a B s s a p d n a B 5 0 6
4 0 6 Q 1 1 6
0 1 6 D r e x e p i t l u M m o r F 4
3
, 2
, 1 e n u T 1 1 L
, 0 1 L a n n e t n A a n n e t n A r e k a e p S w S r k p S p m A F R p m A F A P O F A 1 T U O R K P S 2 T U O R K P S r e f f u B r e f f u B 2 1 L
x R
x T N O R K P S r e x M 0 0 4 Q 0 0 6 Q 1 0 6 Q 7 0 6 Q 3 0 8 U 3 0 8 U 0 0 4 T t u O D U A 5 D
O C V O C V O C V p m A p m A
, 3 D x u A 3 1 8 o r t n o C r e t l i r e t l i r e t l i h c t i h c t i h c t i h c t i A P x T w S w S w S 2 0 9 U 4 D 5 U O C V x R x R s t l o V P P C U S P x R F F F o T
i i l l Figure 3.5 - VHF/UHF Receiver Block Diagram PAGE 40 TECHNICAL DESCRIPTION XFIN-BLADE-SM for single-ended The RF front-end amplifier stage comprises a low-noise transistor amplifier (Q400), which is compensated to maintain good linearity across the required frequency bands and temperature range. This provides excellent intermodulation and blocking performance across the full operating range. The gain of this stage is typically 17dB for both UHF and VHF versions. 4.3.2.2 First Mixer and IF Section The output of the last front-end bandpass filter is coupled into single balanced mixer T400/D413 which converts the RF signal to an IF frequency of 45MHz. The local oscillator injection level is typically +8dBm at T400 pin 1 with low side injection used for UHF and high side for VHF. Following the mixer is IF amplifier Q401 which provides approximately 15dB of gain and in association with its output circuitry presents the required load conditions to the 4 pole 45MHz crystal filter Z401/402. 4.3.2.3 Quadrature Demodulator Additional IF gain of approximately 30dB occurs at U401, which is a dedicated IF AGC amplifier/Quadrature, Demodulator configured input and output operation. The AGC voltage for U401 is derived from the RSSI function of the DSP via AUX CTL and multiplexer U902. The onset of AGC operation occurs when RF input signal levels at the antenna exceeds -90dBm. Conversion of the 45MHz IF signal to I and Q baseband signals is carried out by the demodulator section of U401. The 90MHz local oscillator signal is generated by VCO Q402 which is phase locked by the auxiliary PLL output of U701 via feedback signal AUX LO2. 4.3.2.4 Receiver Audio Processing All receiver audio processing and filtering functions are performed by the CODEC U800 under the control of the DSP. The receiver I and Q analogue baseband signals are converted to digital signals by the CODEC ADC before being applied to a series of digital filters which provide the final stage of adjacent channel filtering, high pass and low pass filtering and mute noise processing for narrow and wideband operation. The processed signals are then converted to analogue audio signals by the CODEC DAC and are applied to conventional audio amplifiers U803A/B and the speaker amplifier U5. The speaker circuits are not used in the Blade. The carrier and signalling mute functions are performed by Q810/811/813 under DSP control with additional receiver muting to U803B being applied by U103C when the mobile is in transmit mode. Flat audio (20Hz 5.8kHz) is provided to S1-6 via amplifier U803A. De-emphasis is performed on the Control Board. Software functions are used to filter off signals below 300Hz and above 3kHz. 4.3.3 Transmitter Refer to Figure 3.6. TECHNICAL DESCRIPTION PAGE 41 4.3.3.1 Drivers and PA Stages The RF output level from the VCO buffer Q604 is typically +5dBm (UHF) and +8dBm
(VHF). TX buffer Q606 increases this level by approximately 3dB (UHF) and 11dB (VHF) and also provides additional VCO isolation. The following section of the TX buffer Q612 is controlled by the transmitter power control loop and Q609. Q609 is normally saturated in transmit mode so there is no minimum gain control applied to this stage. The gain of Q612 is typically 10dB (UHF) and 15dB (VHF) but the output level is reduced by input and output resistive attenuators to limit the PA driver input level to typically +20dBm. The gain of PA driver Q12 is controlled by the power control loop to ensure that transmitter output power remains within defined limits. The PA driver output level is typically +25dBm. PA module U2 utilises three stages (UHF) and two stages (VHF) to achieve the required final RF output power level of +44dBm (25 watts). Power output settings are derived from alignment data stored in flash memory during the initial factory alignment. The DSP processes this data to optimise the power output level relative to the programmed channel frequencies which may be changed at any time without retuning the radio. An active filter comprising Q14, 17,18 and 19 provides isolation to minimise power supply noise at the PA. This is achieved by maintaining a voltage differential of approximately 1V across Q14 and indirectly filtering its gate voltage. Q14 is switched on only during transmit via R523 to minimise receiver power requirements. PAGE 42 TECHNICAL DESCRIPTION XFIN-BLADE-SM 2 0 9 U 7 1 _ 0 0 0 9 t e S r e w o P x T m o r F l r e x e p i t l u M a n n e t n A r e t l i F 2 1
1 1
0 1 L r e f f u B B 3 U r o t a r a p m o C A 3 U 6 1
5 1 Q l r e w o P o r t n o C r o t c e t e D 6 D A P x T h c t i w S
r e t l i F 9 1
8 1
7 1
4 1 Q a n n e t n A h c t i w S 5
4
3 D A P X T 2 U r e v i r D A P x T 2 1 Q l r e w o P o r t n o C 0 1
3 Q i r e x M x R o T x R 1 O L x T p m A
r e f f u B
9 0 6
6 0 6 Q 2 1 6 x R
x T h c t i w S 1 1 6
0 1 6 D O C V r e f f u B 5 0 6
4 0 6 Q s t l o V P P C l o r t n o C O C V O C V x T 2 0 6 Q 1 D O M X T m o r F A G P F i o d u A c M x T i i o d u A s n o i t p O x T a t a D
e t a G r e t r e v n I 0 2 Q H T N Y S o t 1 0 7 U i r e s s e h t n y S r e f f u B 7 0 6 Q O C V x T h c t i w S 3 0 6 Q 1 N I D U A 2 N I D U A e t a G 8 0 1 U e t a G 7 0 1 U p m A c M i 2 1 8 Q N O 1 D O M
) l o r t n o C F A x R
x T
Q
P S D A G P F m o r F Q I m o r F l r o t a u d o m e D 1 0 4 U I F A x T
x R h c t i w S B 3 0 1 U
C A D C D A C E D O C 0 0 8 U F A x R h c t i w S C 3 0 1 U F A x R Figure 3.6 - VHF/UHF Transmitter Block Diagram TECHNICAL DESCRIPTION PAGE 43 4.3.3.2 Tx Power Control Output power is stabilised by a power control feedback loop. L1, R54, a printed circuit transmission line, D6 and associated components comprise the power detector with Q3/10, U3 and associated components providing the power setting and control sections. Forward and reverse power is sampled by the power detector and applied as a DC voltage to the inverting input of comparator U3A. The TX PWR SET voltage, which is a DC voltage proportional to the programmed TX power setting, is applied to the non-
inverting input of the comparator. PA module output level changes due to supply voltage, load or temperature variations are detected and applied to the comparator which proportionally adjusts the PA driver (Q12) supply, and therefore the PA drive level, via Q10/Q3. High temperature protection is provided by Thermistor R452 which progressively reduces the power level if the PA module temperature becomes excessive, approximately 86C case temperature. Q15 and Q16 provide for dual power control time constants necessary for good power ramp and decay characteristics. 4.3.3.3 Antenna Changeover and Harmonic Filter The antenna changeover circuit consisting of pin diodes D3/D4/D5 is switched by Q4/Q8/Q11 and associated circuitry allowing the transmitter output to be coupled to the antenna while providing isolation for the receiver input. With the transmitter switched on, the diodes are forward biased allowing power to be coupled through to the antenna and isolating the receiver by grounding its input at C28. The short circuit at the receiver input is transformed to an effective open circuit at D3 by L13, which minimises transmitter loading. With the transmitter switched off the diodes are reverse biased allowing the receiver input signal to reach the receiver front-end with minimal loading and loss. The harmonic rejection low pass filter comprises L10/11/12 and associated capacitors. 4.3.3.4 Transmitter Audio Processing Microphone audio input signals of 40mV RMS, with a source impedance of 470 ohms, are provided at the microphone input (AUD IN1) by the Control Board. Pre-emphasised flat-
audio, (300Hz 3kHz; 20Hz 3kHz; or 20Hz 5.8kHz) is provided to the transmitter by the Control Board via the 26-way ribbon cable. U108 is a control gate for the microphone audio signals. AUD IN2 is the external audio options and data input used by the Blade Control Board. This is controlled by gate U107. Inverter Q20 ensures that the mic. audio is muted when the data or audio options signals are active. The AUD IN2 input level and source impedance is the same as the microphone input. Alternatively, the Blade can bypass the audio input circuits by sending a digital audio stream to the transceiver module. Q812 is a unity gain amplifier that provides buffering of the audio and data signals. U103B provides CODEC input switching which selects either the receiver I signal or transmitter audio/data signals depending on the TX/RX mode. All pre-emphasis, filtering, compression and limiting processes for narrow and wideband operation are carried out in the CODEC (U800) under the control of the DSP. The processed transmitter audio/data from the CODEC output at VOUTL is applied to the VCO as a modulation signal with a level of approximately 200mV P/P. PAGE 44 TECHNICAL DESCRIPTION 4.3.4 Frequency Synthesis XFIN-BLADE-SM 4.3.4.1 General Refer to Figure 3.7. The SRM9000 frequency synthesiser consists of individual transmitter and receiver (local oscillator) voltage controlled oscillators, loop filter, varactor negative bias generator, reference oscillator and an integrated, dual phase locked loop device U701. 4.3.4.2 PLL The PLL device contains two prescalers, programmable dividers and phase comparators to provide a main and auxiliary PLL. The main PLL of U701 controls the frequency of the TX/RX VCOs via Control Voltage outputs at pins 2 and 3 and VCO Feedback to pin 6. The auxiliary PLL is used to control the receiver 90MHz second local oscillator via the Control Voltage output at pin 17 and VCO Feedback to pin 15. The PLL operation involves the division of the 14.4MHz reference oscillator frequency by divider U710 and the internal divider of U701 down to a lower frequency which corresponds to a sub-multiple of the radio channel spacing i.e. 6.25kHz for 12.5/25kHz channel spacing or 5kHz for 20kHz channel spacing. The VCO frequency is sampled and divided down to the same frequency after which it is phase compared to the reference. Any error produces an offset to the Control Voltage output which is used to correct the VCO frequency. A valid lock detect output is derived from pin 20 and is sampled by the FPGA during transmit. If an unlocked signal is detected the radio will switch back to receive mode. 4.3.4.3 VCO The transmitter and receiver VCOs use low noise JFET transistors (Q600 RX, Q602 TX) and inductors L602 (RX), L608 (TX) to generate the signals for the required band coverage. Electronic tuning is provided by varactor diodes D600 to D608 with their control voltages derived from the Loop Filter, PLL and Negative Bias Generator. VCO selection and timing is controlled by the DSP via the RX and TX power supplies and applied through switches Q601 (RX) and Q603 (TX). VCO buffer Q604/605 isolates the VCO from load variations and active power supply filter Q615 minimises supply related noise. A PLL feedback signal is sampled from the VCO buffer output via buffer Q607. 4.3.4.4 Negative Bias Generator and Loop Filter A positive and negative varactor bias supply similar to the front-end varactor arrangement has been used to achieve the required broadband tuning range of the VCOs. PLL device U701 is programmed to deliver a fixed nominal +2.5V output from phase detector/charge pump CPPF or CPP (selection depends on radio setup) regardless of the channel frequency selected. This voltage is filtered to remove synthesiser noise and reference products by loop filter C719/722/734 and R721/724/734. The resulting low noise voltage is applied to the cathode side of the VCO varactor tuning diodes as a positive bias voltage. The negative bias supply originates as a positive DC voltage (0.1V to 3.0V) at the DAC output of U701 (DOUT) with a level relative to the programmed state of the radio (e.g. TECHNICAL DESCRIPTION PAGE 45 channel frequency, TX/RX state). The voltage is converted to a high level negative supply by VCO Varicap Negative Supply Q700 to Q703. The -17V rail of this supply is generated by U300B/C with D304 to D307 providing the voltage multiplying effect needed to achieve
-17V. The output of the negative supply is applied directly to the VCO varactor anodes as the negative tuning voltage VCAP BIAS. 4.3.4.5 Phase Modulator The modulation path for audio, data and higher frequency CTCSS signals is via D609 and its associated components in the TX VCO. The reference input to the PLL (FXTAL) provides the low frequency modulation path in conjunction with phase modulator Q714 to Q716. U711A is a low pass filter that provides 6dB per octave attenuation to frequencies above approximately 180Hz. Modulation balance adjustment is carried out using a CODEC generated 100Hz square wave applied to TX MOD1. A DAC output from the Alignment Tool is applied to buffer U711B and ramp generator Q711 to Q713 via the TUNE BAL line to adjust the low frequency modulation level. 4.3.4.6 Reference Oscillator TCXO U700 determines the overall frequency stability and frequency setting of the radio. The frequency setting is achieved by adjusting its ADJ voltage with the Alignment Tool. In addition, the ADJ input is used in a frequency control loop with the receiver I and Q signals to provide receiver AFC. U700 operates at 14.4MHz and is specified at 2.0ppm frequency stability over the temperature range 25C to +75C. PAGE 46 TECHNICAL DESCRIPTION XFIN-BLADE-SM o T x T r e f f u B i o d u A n o i t p O t u p n I a t a D d n a 4 1 _ 0 0 0 9 i o d u A c M i i 1 n d u A e t a G 8 0 1 U e t a G 7 0 1 U o T i r e x M x R x R 1 O L x R
x T h c t i w S 1 1 6
1 0 6 D O C V r e f f u B 5 0 6
4 0 6 Q x T
x R O C V 2 0 6
0 0 6 Q I S A B P A C V r e t l i F p o o L
4 3 7 C
9 1 7 2 2 7 O C V i s a B g e N l y p p u S
1 0 7
0 0 7 Q 3 0 7
2 0 7
P S D A G P F m o r F P P C F P P C T U O D i r e s s e h t n y S 1 0 7 U 2 O L X U A P C X U A z H M 0 9 O L 2 0 4 Q 2 O L o T 1 0 4 U l r o t a u d o m e D Q I h t n y S r e f f u B 7 0 6 Q 1 D O M x T H T N Y S L A T X F i r e d v D i 0 1 7 U
) F H U
6 3
) F H V
2 7 e s a h P l r o t a u d o M 6 1 7
5 1 7
4 1 7 Q s s a P w o L r e t l i F A
1 1 7 U 1 d o M x T i c M p m A 2 1 8 Q m o r F A G P F N O 1 D O M I x T
x R h c t i w S F A B 3 0 1 U
C A D C D A C E D O C 0 0 8 U Q N I C F A C S O f e R 0 0 7 U C F A C F A p m A A 2 0 8 U D O M x T h c t i w S A 3 0 1 U r e f f u B 0 1 7 Q n e G p m a R 3 1 7
2 1 7
1 1 7 Q r e f f u B B
1 1 7 U l a B e n u T Figure 3.7 - VHF/UHF Synthesiser, Block Diagram TECHNICAL DESCRIPTION PAGE 47 l a i r e S t r o P a t a D x T 5 1 _ 0 0 0 9 a t a D x T r e f f u B 1 Q
C A D C D A C E D O C 0 0 8 U t r o P l l l l 4
1 C G A e n u T a i r e S i r a V e n o T A d n E d n E p a c 1 A X U M a t a D x R e n u T E F O A X U M N E X U M f e R C D A e n u T 2 0 9 U 6 0 1 U L T C X U A t n o r F t n o r F r e f f u B r e f f u B l e v e L A G P F o r t n o C A 1 0 9 U B 2 0 8 U t e S r e w o P x T 9 0 9
2 0 9 r e w o P x T s t l o V g e N r o t a s n a r T
1 0 9
0 0 9 Q r e x e p i t l u M 4.3.5 RF Sub-Assembly Internal Control Logic s t l o V p o o L y r o m e M t e s e R k c o C h s a F 0 0 1 Q 1 0 1 U 2 0 1 U 4 0 1 U P S D X E V O M l l n e G p m a R C 5 0 1 U p o o L s t l o V i r e s s e h t n y S 1 0 7 U PAGE 48 TECHNICAL DESCRIPTION XFIN-BLADE-SM Figure 3.8 - VHF/UHF Control Block Diagram 4.3.5.1 DSP and FPGA The Blade RF sub-assemblies operate under the control of a DSP (U102) and FPGA
(U106) combination which together with a number of other dedicated devices perform all the operational and processing functions required by the radio. The FPGA is configured by the DSP under software control to provide the following functions:
Channel set-up for operating frequency Modulation processing and filtering De-modulation processing and filtering TX power output reference Receiver front-end tuning Serial communications with control board Modem functionality for data modulation Embedded signalling / CTCSS generation and decoding CO control Receiver muting control TX / RX switching PLL detect 4.3.5.2 DSP Clock Oscillator The DSP is clocked by a 15.360MHz oscillator that consists of crystal X100 and an internal DSP oscillator. Q100 forms a crystal switching circuit with C117 which when activated by a command from the FPGA steers the oscillator away from potential interfering frequencies. 4.3.6 RF Sub-Assembly Internal Memory Memory consists of the internal DSP memory and an external 4MB non-volatile Flash Memory U104. When power is off, program and data is retained in Flash Memory. At power-on, a boot program downloads the DSPs program from Flash Memory to its internal RAM for faster program execution and access to data. 4.3.6.1 Multiplexer U902 contains 2 separate 4-channel multiplexers providing a total of 8 independently controlled analogue switches. Under software control, the multiplexers produce tuning voltages from supplied data for the receiver front-end (TUNE 1 to 4), TX power setting
(TX PWR SET), receiver AGC (AGC-1), alert tone (A TONE) and FPGA ramp generator
(ADC REF). Buffer U802B is fed with a composite digital tuning signal (AUX CTL) from the DSP/FPGA containing the data for AGC, A TONE, ADC REF and TX PWR SET settings. The level is dependent on channel frequency and tuning and varies between 0.1 to 3.0V. This signal TECHNICAL DESCRIPTION PAGE 49 is applied to one group of 4 analogue switches in U902 via a common input connected to pin 13. The second group of 4 switches is fed with the receiver front-end tuning signal FE TUNE (to provide outputs for TUNE 1 to 4) via the second common input at pin 3 as described in the receiver front-end section. The 2 groups of analogue switches are independently controlled by FPGA binary signals MUX A0 and A1 and enable line MUXEN to output the required tuning voltages as a series of pulses. These pulses are converted to steady state voltages by integration capacitors C904 to 911 and C921 to 925. 4.3.7 RF Sub-Assembly Internal Power Supplies 4.3.7.1 Power On Function This set of functionality is designed for normal use in a vehicle environment; hence much of it is unused in this product. The unregulated 13.8V DC input is routed directly to high current devices and is also switched via FET Q350. The output from Q350 feeds three, low drop out series regulators and associated switched and auxiliary supplies that along with a negative voltage generator provide all the switched power requirements of the transceiver. Q315/316/317 and U313 form a power on/off latch circuit that is activated by a pulse from the control unit or microphone/handset via PWR ON or PWR OFF and controls the FET power switch Q350. A PWR OFF operation requires the button to be held down for more than 2 seconds. This is then sensed by the FPGA via the PWR SENSE line that turns the radio off by placing a positive pulse on the PWR OFF line thereby resetting U313B. 4.3.7.2 Power Lines The following is a list of the internal RF Sub-Assemblys power supplies and some of the devices and circuits they supply.
+8V Regulator U310 TX buffer Q612 VCOs and VCO buffers via active filter Q615 RX second local oscillator via Q403 Regulated +8.0V supply (8V0 and +8V) Regulated +8.0V switched supply (RX PSU) RX front-end IF Amplifier Various switching functions
+5V Regulator U311 Regulated +5.0V supply (5V0 and +5V) RX front-end varactor positive bias Synth. buffer Q607 VCO varactor negative supply Q700 to Q703 TCXO U700 RX audio amplifiers U803A/B PAGE 50 TECHNICAL DESCRIPTION XFIN-BLADE-SM RX mute switch Q810/813 Multiplexer U902 FE TUNE level translator and buffer U901A, Q900/901 Regulated +5.0V switched supply (TX PSU and TX PSU+) TX power control U3 TX buffer Q606 Microphone amplifier Q812 Various switching functions
+3.3V Regulator U312 I Q demodulator U401 Analogue supply for CODEC U800 Digital supply for CODEC U800 DSP U102 FPGA U106 Regulated +3.3V supply (3N3) Regulated +3.3V supply (3Q3) Regulated +3.3V supply (3C3) Regulated +3.3V supply (3P3) Unregulated 13.8V (13V8 UNSW ) TX PA module U2 TX PA power control circuit Q3 Active filter Q14/17/18/19 Antenna changeover switch Q4/8/11 RX mute switch Q811 RX speaker amplifier U5 PLL U701 TCXO divider U702 Negative Power Supply U300B/C Provides -17.0V output (-17V0)
-12.0V Output (-12V0) multiplexer U902 Negative rail for VCO Varicap Negative Supply Q700, 701, 702 and Q703 Negative rail for FE TUNE level translator Q900, 901, 902, 903 and TECHNICAL DESCRIPTION PAGE 51 4.4 ANTENNA REQUIREMENTS The antenna connections on the Blade are provided with 50W female N-type sockets. These should be tested, by use of a suitable test set, e.g. Anritsu/Wiltron S331A, for good VSWR (1.5:1 or better) at the Tx and Rx frequencies prior to use. Mating connectors should be galvanically compatible with nickel outer and gold centre pin to minimise passive intermodulation. A minimum of 85dB transmit-receive isolation should be provided by the antenna system and associated filters. 4.5 POWER SUPPLIES For type approval reasons, this product should not be operated with un-approved supplies. The switch mode supplies used in the wall mount and rack mount ancillaries are able to accept main AC in the range of 100 to 240 V, 50 or 60Hz. The output from the switched mode power supply to the Blade is +13.6VDC. Pin 3 on the D-type Power Connector provides protective earthing on the equipment. This should be connected using heavy duty Green/Yellow earthing wire, capacity greater than mains feed to equipment, as few bends as possible and an appropriate eyelet tag. Mains protective Earth should be checked for low impedance (<0.3W). The equipment must be installed so that the IEC connector for the Wall or Rack Mount can be easily removed and/or the power socket should be readily accessible. All mains wiring must comply with local wiring regulations. 4.6 CONFIGURATION Configuration is provided via file download. This is performed via the XBMT Programmer using a PC connected to the Xfin Control card via its Ethernet port. Files are then stored in the product in non-volatile memory. Editing of parameters on a live base station is also possible with a connected PC. 4.7 ADJUSTMENT AND ALIGNMENT The two RF modules within this product are based upon the RF card of an SRM9000 mobile. The set up and alignment procedures for SRM9000 should be followed. In the event of a level-3 repair being required, refer to the SRM9000 Service Manual (TSD-
SRM9000-SM) [1]. There are no user adjustments to be made in normal use. PAGE 52 TECHNICAL DESCRIPTION 5 MAINTENANCE Although no Routine Maintenance is required on the Blade, it is generally good practice to clean the inside of the equipment on each occasion that it is necessary to open it. Dust and or light debris may accumulate in the following areas:
Fans Heatsinks Vents Use a fine bristle brush to remove all dust/debris from these areas, taking care not to damage the equipment. 5.1 TORQUE SETTINGS The torque range to be used on tightening Torx screws and self-tapping screws on the Blade and SRM sub-assemblies is 8-10Lb/in (0.90-1.13 Nm). For all other small screws (Phillips/pozi head) use a maximum of 8 Lb/in (0.90Nm). 5.2 DISASSEMBLY When disassembling any part of the Blade take care to note where parts belong. 5.2.1 To Remove the Blade from a Rack When also fitted with associated PSUTRAY and shelf supports:
1. Switch off at mains. Undo the screws holding the front panel of the PSUTRAY. Disconnect and remove the PSUTRAY. Undo the four screws securing the Blade Ears to the rack. If the Blade is to be removed entirely, then disconnect all cables from the rear of the equipment. The Blade can now be lifted away from the shelf supports. 2. 3. 4. 5. 6. 5.2.2 To Open the Blade Qty 2 Fixing Screws M3 1. 2. Remove the 2 x M3 Pan Head screws one each side of the lid. Lift and pull the front edge of the lid to remove the lid. 5.2.3 To Remove a Tx or Rx Assembly 1. Disconnect the BNC connector. Disconnect the DB15 power connector. Disconnect the appropriate miniature 26-
way and the long ribbon cables (when refitting, take care to align centrally). Undo the two quarter-turn Dzus fasteners. Lift the rear of the sub-assembly then slide backwards until the Heatsink clears the front lip of the recess (take care not to damage any of the components on the control board). Transmitter Receiver DB15 Connectors BNC Connectors Miniature Ribbon Cables Long Ribbon Cable Dzus Fasteners 2. 3. 4. 5. PAGE 54 MAINTENANCE 5.2.4 To Remove the Control Board 1. Remove the top cover as detailed in Section 4.2.3. Disconnect the three ribbon cables from the board. Disconnect the Power Connector. Remove the four socket fasteners from the 9-way and 37-way connectors on the rear panel. Release the three plastic locking pegs. Press in to release Carefully lift out the board taking care not to damage the Thermistor assembly underneath the board. Ensure that the Thermistor assembly is protected from damage when the Control Board is out of the Base Station chassis. 2. 3. 4. 5. 6. XFIN-BLADE-SM Ribbon Cables Power Connector Socket Fasteners Plastic Locking Pegs Thermistor 5.2.5 To Remove the Front Assembly 1. Remove the four, Front Panel securing screws two per each side of the Front Panel Carefully ease the front panel assembly away from the MMI assembly. Taking care to prevent damage to the control knob. 2. MAINTENANCE PAGE 55 3. Carefully separate the cables (power, fans, loudspeaker, control card) taking care not to damage or unduly tension them. 5.2.6 To Remove the MMI Board 1. 2. 3. 4. 5. Remove the front assembly as described in Section 5.2.5. Remove the six securing screws from the chassis brackets. Detach all of the cables (power, fans, loudspeaker, control card). The MMI Board may now be removed. To Remove the Loudspeaker, remove the front assembly and MMI board as described above. Remove the four M3 nuts securing the Loudspeaker to the fan bulkhead. 5.2.7 To Remove a Fan 1. 2. Remove the Front assembly as described in Section 5.2.5 and the MMI board as described in Section 5.2.6. Remove the two fixing screws securing the appropriate Fan to the fan bulkhead. Remove the Fan from the fan bulkhead. 3. 5.3 RE-ASSEMBLY In general, the re-assembly procedure is the reverse of disassembly procedure. If there are any differences or there are any special areas of concern, they are described in this section. 5.3.1 To Fit an MMI Board 1. Fit the new MMI Board to the three support brackets using six M3 mm Pan-Head Screws. 2. Offer the front panel into position ensuring the top edge of the front panel clears the control knob. Ensure that the LCD Display and the control knob are correctly centred. Reverse the procedure described in Section 5.2.6. 3. 5.3.2 To Fit the Front Assembly 1. Notes: 1. Care must be taken to prevent damage to the cables and connectors when re-
Reverse the procedure described in Section 5.2.6 taking note of the following:
locating them through the access slot in the fan bulkhead and reconnecting them to the MMI board. 2. Care must be taken to prevent trapping the cables when fitting the front cover back together with the fan bulkhead. 5.3.3 To Fit the Control Board 1. Reverse the procedure described in Section 4.2.5. PAGE 56 MAINTENANCE When positioning the Control Board, care must be taken to ensure that the Thermistor is located correctly in the hole in the base plate. XFIN-BLADE-SM Note:
MAINTENANCE PAGE 57 6 PRODUCT VARIANTS AND ACCESSORIES 6.1 VARIANTS Blade - Full-Duplex Intelligent Base Station 25W Ext. PSU 25W Int. PSU 100W Version 66 - 88 MHz E0 Band XFINBLADE-E0 XFINBLADEI-E0 XFINPWRBLADE-E0 136 - 174 MHz AC Band XFINBLADE-AC XFINBLADEI-AC XFINPWRBLADE-AC 174 - 208 MHz K1 Band XFINBLADE-K1 XFINBLADEI-K1 XFINPWRBLADE-K1 208 - 245 MHz KM Band XFINBLADE-KM XFINBLADEI-KM XFINPWRBLADE-KM 310 - 350 MHz R0 Band XFINBLADE-R0 XFINBLADEI-R0 XFINPWRBLADE-R0 335 - 375 MHz R1 Band XFINBLADE-R1 XFINBLADEI-R1 XFINPWRBLADE-R1 400 - 450 MHz TK Band XFINBLADE-TK XFINBLADEI-TK XFINPWRBLADE-TK 400 - 480 MHz TU Band XFINBLADE-TU XFINBLADEI-TU XFINPWRBLADE-TU 440 - 500 MHz UW Band XFINBLADE-UW XFINBLADEI-UW XFINPWRBLADE-UW 470 - 530 MHz WR Band XFINBLADE-WR XFINBLADEI-WR XFINPWRBLADE-WR 6.2 ACCESSORIES The full range of accessories for the Blade is shown on the two Blade Accessories Posters. Accessories for MIC Connector TSF Serial Programming Lead with adaptor (DB-
9) Wall Mount Installation Items Wall Mount Unit with universal PSU (for single BS) Mains Cord for Wall Mount unit (EU/UK/US - select country) TSF-
PROGLEAD TSF-WMPS TSF-ACCORD-EU TSF-ACCORD-UK TSF-ACCORD-US TSF-DUPxx (where xx =
freq band) Duplexer option for wall-mount use PAGE 58 PRODUCT VARIANTS AND ACCESSORIES XFIN-BLADE-SM Rack Mount Installation Items Rack Mount Ears (1U) Rack mount PSU tray (1 base station, 2U) 25 WATT Rack mount PSU tray (1 base station, 2U) 100 WATT Duplexer for PSUTRAY (specify frequencies TSF only) Mains Cord for PSUTRAY (EU/UK/US - select country) TSF-EARS TSF-PSUTRAY TSF-2100PSUTRAY TSF-DUPxx (where xx =
freq band) TSF-ACCORD-EU TSF-ACCORD-UK TSF-ACCORD-US 6.2.1 TSF-ACCORD A 2m long cable used to connect the AC Mains Supply to the Blade, using the Wallmount, or a PSUtray in the Rackmount. Request the version relevant to the area of use:
TSF-ACCORD-UK United Kingdom TSF-ACCORD-EU Rest of Europe TSF-ACCORD-US United States 6.2.2 Duplexers, Combiners, Cavities, RSA Units Where a duplexer, combiner, cavity or Rx Antenna Amplifier must be re-ordered, an enquiry should be made to a qualified Project Engineer, who can advise on specific components. PRODUCT VARIANTS AND ACCESSORIES PAGE 59 6.2.3 TSF-EARS A pair of 1U Rack Mounting Ears with screws for the Blade Base Station. These must be used in conjunction with a rack-support 6.2.4 TSF-PROG The TSF Serial Programming Lead contains an RS232 level converter. Together with the adaptor (DB-9) it can be used to connect the Blade, via the front panel RJ45 connector, to a PC. 6.2.5 Blade Shelves Where a re-ordering enquiry is made with regard to Blade shelving, a qualified Project Engineer should be consulted to give advice. Order code for a PSU tray for Blade systems involving 1-3 basestations:
PSU Trays for Blade Systems with 1-3 Basestations Rack mount PSU tray (19 1U for 1x 25W Blade) Rack mount PSU tray (19 1U for 2x 25W Blade) Rack mount PSU tray (19 1U for 3x 25W Blade) 6.2.6 TSF-1BS PSUTRAY A 2U-rack tray with front panel is designed for use with a Blade in an enclosed 19 rack where duplexers must be shelved alongside power supplies. The Blade plus the TSF-PSUTRAY occupies a total of 3U of rack space. TSF-1PSU1U TSF-2PSU1U TSF-3PSU1U The tray is supplied complete with a universal power supply (100-240VAC, 50/60Hz, IEC input) suitable for a single Blade. TSF-DUPLEXER may be fitted as an option. An optional PSU may be used with the Power Blade configuration. 6.2.6.1 TSF-1BS PSUTRAY Specifications Dimensions:
480mm(W) x 400mm(D) x 90mm(H). Weight:
3.95kg. Mains Connector:
IEC Power requirement:
150W Fuse Rating:
Blade Cable:
110V: T250V 4A HB 250V: T250V 2A HB. Approx. 300mm PAGE 60 PRODUCT VARIANTS AND ACCESSORIES XFIN-BLADE-SM PRODUCT VARIANTS AND ACCESSORIES PAGE 61 7 SPARES 7.1 SERVICE CONCEPT The Blade series has been designed to provide a low cost trunked and non-trunked, analogue, base station, using common core electronics, software and interfacing. It is a requirement that once the customer has purchased equipment, Team Simoco can follow this by providing ongoing, high level of customer support together with a competitive and professional servicing activity. There are three levels of service available:
Level Activity 1 2 3 This is intended to achieve rapid turn around by Complete replacement of transceiver or ancillaries Replacement of sub-
assemblies Reprogramming Checking/replacement of fuses Faulty units are to be returned to a level-2 service facility with an attached fault report. This level of service should not exceed 20 minutes. Level 2 service includes level 1 with the addition of fault rectification by:
Replacement of PCB, mechanical component, or cable assembly Cosmetic repair Repair by PCB or mechanical component replacement, Cosmetic repair. Repair of PCB to Recommended Spares SRM sub-assembly
(by band) Control board MMI board Fan Spare cable assys. Replacement fuses Recommended Test Equipment and tools Multimeter P.C. with Programmer Engineering handset Small flat-blade screwdriver Small cross-head screwdriver Large pozi-drive screwdriver As above + service aids and test equipment As above + service aids and test equipment Listed in Level 2 Spares Schedule Spare parts available to order from Central Spares Listed in Level 2 Spares Schedule Radio PCB components only XFIN-BLADE-SM component level in CRU. available to CRU. 7.2 LEVEL-2 SPARES SCHEDULE 7.2.1 XFIN BLADE (INTERNAL PSU VERSION) SPARES PAGE 63 7.2.2 Assembly Item List Figure 6.1 Exploded Diagram of the Xfin Blade Part Number D116-0027-M-01 D116-0024-M-05 D116-0006-M-03 00601-0001630-0 00606-000540-0 D116-0012-M-04 D116-0025-M-01 D116-0028-M-02 D111-0042-M-02 0003-0001-M-07 D111-0006-M-01 0003-0029-W-03 02800-0000175-0 D111-0041-G-01 02700-0000140-0 01109-0000120-0 00304-0002190-0 00304-0002110-0 D116-0013-W-02 D116-0022-W-01 D116-0015-W-02 0003-0018-W-01 D116-0014-G-03 D116-0001-G-03 59800-0000034-0 00806-0000130-0 00804-0000002-0 00804-0000180-0 52701-0000040-0 00602-0000360-0 00603-0000210-0 3513 903 67181 00601-0001660-0 00601-0000420-0 Part Description Quantity CASE BULKHEAD X/FIN X-FIN FRONT PANEL (SOLID FRONT) LID ASSY X/FIN M3X8 SCREW PAN HD POZI STL/S M3 PLAIN WASHER STAINLESS/STL. 230V REAR PANEL TSC 2000 WINDOW PROTECTION INSULATION PAD TSF/XFIN TSF2025I INT PSU BRKT (LAMBDA) RACK MNTG EARS TSF2000 TSF WALL MOUNTING EAR TSF LOUDSPEAKER ASSY FAN TYPE 412J/2H-T224-730Q TSF2000 FUSE BOARD KNOB CONTROL SILVER 25MM LIGHT GUIDE 14mm ROUNDED CONNECTOR IEC FLANGED CONNECTOR CLIP RETAINING RF CABLE RX TSC2000 X/FIN DC POWER LOOM INTERNAL TSC2000 PA TO CTRL PCB CBL FRM RIBBON CABLE RX/TX SRM MMI ASSY - X/FIN CONTROL BOARD ASSY - X/FIN FUSEHOLDER PCB 20X5MM FUSE COVER CLEAR FUSE 10A Q/BLOW GLASS 20MM 2A 20MM QB GLASS PSU 12V 150W (TSF2025i) RECEPTACLE DZUS 334-200-190 PCB SUPPORT - BLIND HOLE 4.8mm LABEL T/A & UNIT SRM9000 M3X8 PAN HD POZI-BLACK M3 X8 POZI P/HD BZP 1 1 1 2 2 1 1 1 1 2 2 1 3 1 1 5 1 1 1 1 1 2 1 1 1 1 2 1 1 4 4 3 4 6 PAGE 64 SPARES 00601-0000585-0 00601-0000700-0 00601-0000760-0 00602-0000120-0 00601-0001560-0 00606-0000220-0 00601-0001570-0 00601-0000440-0 00606-0000180-0 00601-0000650-0 D111-0046-W-03 00606-0000190-0 0003-0016-W-01 00601-0001570-0 00601-0001580-0 D116-0031-W-01 01202-0000150-0 01202-0000160-0 01202-0000170-0 PA-ACCORD-UK D116-0030-W-01 02313-0000010-0 01108-0000010-0 M3 X 30 POZI P/HEAD M4 X10 CSNK POZI M5 X20 POZI P/HD BZP M3 NUT BZP NUT M5 HEX STEEL ZINC PLATE M4 PLAIN WASHER BZP S/P WASHER STEEL ZINC/P M4 M3 X10 POZI P/HD BZP M3 PLAIN WASHER BZP M4 X 6 P/HD POZI IEC CONN TO LAMBDA PSU CBL M3 S/P WASHER BZP TSF2000 RX TX CABLEFORM S/P WASHER STEEL ZINC/P M4 WASHER PLAIN M5 ZINC PLATE XFIN MMI TO FUSE PCB CBL FORM XFIN PACKING BOX XFIN PACKING BAG XFIN ETHER FOAM PACKING CORD AC POWER UK XFIN CTRL PCB TO PSU CBL FRM ENCODER 15mm KNURLED SHAFT DISPLAY LCD WHITE/BLUE XFIN-BLADE-SM 6 4 1 8 3 2 2 2 2 2 1 4 1 2 2 1 1 1 1 1 1 1 1 7.3 WARRANTY Unless superseded by specific contractual/supply agreements, the normal statutory 24 -
month warranty will apply to all base stations and ancillaries. 7.3.1 Service Within and Out Of Warranty Please contact our Central Repair facility regarding support of either type. customerservices@teamsimoco.com Tel: +44 (0)1332 375620 In some countries a local Simoco agent may be responsible for providing this service. 7.3.2 Ancillary Items Please contact our Central Repair facility regarding service, for replacement of these parts. customerservices@teamsimoco.com Tel: +44 (0)1332 375620 SPARES PAGE 65 7.3.3 Unpacking Equipment Any damaged or missing parts must be notified to Team Simoco or their agent in writing within 10 days of receipt. 7.4 SOFTWARE POLICY Software provided by Team Simoco shall remain the Company's property, or that of its licensors and the customer recognises the confidential nature of the rights owned by the Company. The customer is granted a personal, non-exclusive, non-transferable limited right of use of such software in machine-readable form in direct connection with the equipment for which it was supplied only. In certain circumstances the customer may be required to enter into a separate licence agreement and pay a licence fee, which will be negotiated at the time of the contract. The customer undertakes not to disclose any part of the software to third parties without the Company's written consent, nor to copy or modify any software. The Company may, at its discretion, carry out minor modifications to software. Major modifications may be undertaken under a separate agreement, and will be charged separately. All software is covered by a warranty of 3 months from delivery, and within this warranty period the Company will correct errors or defects, or at its option, arrange free-of-charge replacement against return of defective material. Other than in the clause above, the Company makes no representations or warranties, expressed or implied such, by way of example, but not of limitation regarding merchantable quality or fitness for any particular purpose, or that the software is error free, the Company does not accept liability with respect to any claims for loss of profits or of contracts, or of any other loss of any kind whatsoever on account of use of software and copies thereof. PAGE 66 SPARES XFIN-BLADE-SM SPARES PAGE 67 8 LCD MENU OPERATION 8.1 DEFAULT DISPLAY The LCD Display is a back-lit alphanumeric 2-line visual output which shows status, menu options and call activity. Immediately following power-up, the LCD indicates its progress through the boot-up procedure. A typical sequence is:
BLADE Xfin Loading Init Available Additional status changes include adoption of Control status, * marker indicating assumption of site master status and the # marker which indicates assumption of system master status (in a multi-site configuration). 8.2 MENU STRUCTURE The Xfin Blade menu is manipulated via the control knob. Rotating the knob while in default state will alter the loudspeaker volume setting. Pressing the knob once from the default display opens the main menu, with the current option displayed on the screen. Rotating the control knob cycles through the available options, which are:
1. Alarms 2. Set IP Address 3. Set Position in Site 4. Set Site ID 5. Set System ID 6. Enable Screen Saver 7. Test Menu 8. Exit Where a menu selection gives the option of altering parameters (e.g. entering a series of digits), this may be carried out by:
moving the underline cursor to the variable in question by rotating the knob pressing the button to select the digit pressing the knob to set the digit rotating the knob to alter the value PAGE 68 LCD MENU OPERATION XFIN-BLADE-SM moving the cursor to the tick mark at the side of the screen when all variables are altered and pressing to confirm (an x on the other side of the screen can be selected to cancel the alteration). Where a variable can only be increased or decreased, no cursor, tick or x symbols are present. 8.2.1 Alarms Menu If the Alarm LED is lit (red LED on the far right hand side of the Blade front-panel), the Alarms menu will display the details of each alarm for example Tx Fan Too Slow, No DSP, No Rx Module etc. Each alarm message is displayed by rotating the control knob. 8.2.2 Set IP Address Accessing this menu displays the current IP address as four 3-digit sections. This address may be altered from this section. 8.2.3 Set Position in Site Accessing this menu displays the current position in site as a 2-digit decimal number. This number may be altered from this section. 8.2.4 Set Site ID Accessing this menu displays the current site ID as a 2-digit decimal number. This number may be altered from this section. 8.2.5 Set System ID Accessing this menu displays the current system ID as a 2-digit decimal number. This number may be altered from this section. 8.2.6 Enable Screen Saver This section allows the user to enable the screen saver. The screen saver activates after the LCD menu has not been accessed for a set period. 8.2.7 Test Menu This menu is for engineering use only and should only be access by qualified personnel. It can be used to assist with the configuration of audio levels and the testing of communication paths. 8.2.8 Exit Select this option to exit the menu and revert to the display of current status.. LCD MENU OPERAT ION PAGE 69 9 PROGRAMMER GUIDE 9.1 GETTING STARTED Ensure that the PC is connected to the Xfin Blade Management Terminal via a CAT 5 Ethernet cable or a RS232 Serial cable. This provides the communications link between the Xfin Blade Management Terminal and the Xfin Blade. 9.1.1 Main Screen The main menu by default displays clickable buttons of several configurable areas. Some areas will be hidden depending on whether the Xfin Blade Management Terminal is in Single Site or Multi Site. The areas are:
Switch Site Configuration Xfin Blades Channels Channel Lists PABX/PSTN Operating Parameters Fleets Subscribers Access Levels Diversions White List Timers Time Schedule External Alarms Queue Depths VOX 9.2 DATABASE The Xfin Blade Management Terminal requires a database to be created to store raw data. This data can then used to configure an Xfin Blade. When configuring the Xfin Blade data is taken from the database and sent to the Xfin Blade. Data that the Xfin Blade Management Terminal receives from the Xfin Blade is also stored within the database. PAGE 70 PROGRAMMER GUIDE XFIN-BLADE-SM 9.2.1 Creating a New Database Located across the top of the Main Menu form there is a menu bar. To create the new database click on Database tab, then select New from the drop down. A window will appear allowing a new database to be created in a location of choice. Use the save in drop down box to navigate to the area where the database is to be stored. Give the database a name using the File Name box and then click on save. Clicking on cancel instead would bring back the main menu form. 9.2.2 Opening a Database Multiple databases can be created however the Xfin Blade Management Terminal will only use one database at a time. Xfin Blade Management Terminal offers the ability to switch between the databases by selecting Database from the menu bar at the top of the form, and clicking Open in the drop down. Using the Look in drop down box navigate the database to be opened. Select the database by clicking on the database to highlight it. Now select the button Open which will load in that database. Clicking cancel instead will bring back the main menu. 9.3 COMMUNICATIONS SETTINGS To connect to the Xfin Blade the communications settings will first need to be altered. This is located in the menu bar running across the top of the form, under Communications. On this form there are options for Ethernet and Serial. 9.3.1 Connection Type There are two options Ethernet via CAT 5 cable, or Serial via RS232. Select the type of connection by left clicking on one of the radio buttons in the Ethernet Communications box. 9.3.2 Serial Communications The Serial Communications needs to be configured when Serial is selected in the Connection Type box. There are five setting in the Serial Communications:
Com Port This is the serial communication port being used to connect to the Xfin Blade. To select a Com Port click on the arrow in the box to the right of Com Port and select a Com Port from the drop down list. Baud Rate This is the speed at which the data is passed through the serial connection. To Select a Baud Rate click on the arrow in the box to the right of Baud Rate and select a Baud Rate from the drop down list. Parity This is a type of error detection using bit checking. To select a Parity click on the arrow in the box to the right of Parity and select a Parity from the drop down list. Stop Bits This is the bit that signals the end of a transmission on the serial line. To select a Stop Bit click on the arrow in the box to the right of Stop Bit and select a Stop Bit from the drop down list. PROGRAMMER GUIDE PAGE 71 Flow Control This is used to regulate the rate at which information is transferred from one device to another. To select a Flow Rate click on the arrow in the box to the right of Flow Rate and select a Flow Rate from the drop down list. Now that the Serial Communications setting have been configured click on Save & Exit to menu to the main menu. Alternatively click on refresh to set the setting back to what they were when the Communications Settings form was first opened. 9.3.3 Ethernet Communications The Ethernet Communications options needs to be configured when Ethernet is selected in the Connection Type box. There are four settings in the Ethernet Communications:
Connect to Site Master/Connect to System Master This option allows you to choose whether to connect to the Site master or if you want to connect to the System master. Site ID This is the ID of the site that you want to connect to. The Site ID is set from a Xfin Blades front panel. System ID This is the ID of the system that you want to connect to. The System ID is set from a Xfin Blades front panel. UDP Listening Port This is the port that the Xfin Blade Management Terminal listens for a connection on. To set this port, click on the box to the right of UDP Listening Port and enter a port number. The default value for this port is 4950. Now that the Ethernet Communications setting have been configured click on Save & Exit to menu to the main menu. Alternatively click on refresh to set the setting back to what they were when the Communications Settings form was first opened. 9.3.4 Open Comms To be able to send messages to the Xfin Blade, communications firstly has to be established between the Xfin Blade Management Terminal and Xfin Blade. Ensure that the Communication settings are correct. From the main menu window select Communications from the menu bar that is located across the top of the form. Left click on Open Comms from the drop down list. The Xfin Blade Management Terminal will now attempt to connect to the Xfin Blade. If the Xfin Blade Management Terminal was successful then Established will be displayed in the button left hand corner of the main menu. If the Xfin Blade Management Terminal does not go in to Established then make sure that the Communication Settings are correct and then retry connecting. 9.4 STATE There are two states that the Xfin Blade Management Terminal can be in. The state will determine how the Xfin Blade Management Terminal configures the Xfin Blade. Offline When in offline mode any changes that are made to the data contained in the Xfin Blade Management Terminal will not be sent to the Xfin Blade. To place PAGE 72 PROGRAMMER GUIDE XFIN-BLADE-SM the Xfin Blade Management Terminal in to offline mode click on the small box in the status bar of the main menu until it says offline. Live When in live mode any changes that are made to the data contained in the Xfin Blade Management Terminal will also be sent to the Xfin Blade. To place the Xfin Blade Management Terminal in to Live mode make sure that the Live mode click on the small box in the status bar of the main menu until it says live. 9.5 AREA CONFIGURATION Choose an area from the main menu to configure by left clicking on one of the large buttons, which are located in the middle on the main menu form. The area form will now be shown with the configurable fields. The majority of the forms all follow this same format and allow you to edit, add, delete, get, get configuration, accept/send, send configuration and reset configuration. The mode effects differ if the Xfin Blade Management Terminal is in Live or Offline state. When the Xfin Blade Management Terminal is in Live mode the changes happen to the Xfin Blade Management Terminal and the Xfin Blade. When the Xfin Blade Management Terminal is in Offline mode the changes are only stored in the Xfin Blade Management Terminal. 9.5.1 Edit To alter any of the fields shown on the form the form needs to be in edit mode. Once the form is set to edit mode the boxes that were blanked out are now available for altering. Edit mode will allow you to only alter an existing record. To set the form in to edit mode left click on the Edit button located on the right hand side of the screen. To get out of edit mode, click on accept or cancel. Accept will store the changes, if any that have been made. Cancel will ignore any changes that have been made and return back to its previous state. 9.5.2 Add Add mode allows a new record to be added to the Xfin Blade Management Terminal. Left click on the add button which is locate to the right of the form and an empty form will be shown. Enter the required data in to all of the boxes. To accept the record click on the accept button. To cancel the record, click on the cancel button. 9.5.3 Delete Delete will remove the current selected record that is being shown from the Xfin Blade Management Terminal and the Xfin Blade depending on the state of the programmer. Left click on the delete button located on the right hand side of the form to delete the record. 9.5.4 Accept/Send Accept/Send will accept the record that is currently being show on the form. Accept/Send will also send the record to the Xfin Blade as long as comms are established. Left click on the Accept/Send button located on the right hand side of the form to Accept/Send a record. PROGRAMMER GUIDE PAGE 73 9.5.5 Get Record As long as the Xfin Blade Management Terminal has established a connection to an Xfin Blade Get Record will retrieve an update on the current selected record. To do a Get Record left click on the Get Record button located on the right hand side of the form. 9.5.6 Send Configuration As long as the Xfin Blade Management Terminal has established a connection to an Xfin Blade Send Configuration will send every record for the current area to an Xfin Blade. To Send Configuration left click on the Send Configuration button located on the right hand side of the form. 9.5.7 Get Configuration As long as the Xfin Blade Management Terminal has established a connection to an Xfin Blade Get Configuration will retrieve every record that is store in the Xfin Blade for that area. To Get Configuration left click on the Get Configuration button located on the right hand side of the form. 9.5.8 Reset Configuration Reset Configuration offers the user the choice to delete everything that is in the Xfin Blade Management Terminals current database for that area or to delete everything in the database for that area for the Xfin Blade and the Xfin Blade Management Terminal. 9.5.9 Navigation Buttons One area can store multiple records and the form can only show one record at a time. The navigation buttons located below the forms data boxes. The double arrow that points to the left displays the first record. The double arrow that points to the right displays the last record. The single arrow that points to the left displays the previous record. The single arrow that points to the right displays the next record. PAGE 74 PROGRAMMER GUIDE XFIN-BLADE-SM PROGRAMMER GUIDE PAGE 75 Team Simoco Ltd, Field House, Uttoxeter Old Road, Derby DE1 1NH Tel: +44 (0) 1332 375500 FAX: +44 (0) 1332375501 www.teamsimoco.com XFIN-BLADE-SM A. GLOSSARY AND ABBREVIATIONS TX RX DSP USB MII JTAG EMI GPIO PCB PHY SDRAM UART MMI RTC PA CoDec TSC RTS CTS PSTN TBR LVD NIC LCD SPORT ROM NC E&M DAA Transmit Receive Digital Signal Processor Universal Serial Bus Media-Independent Interface Joint Test Action Group Electro-Magnetic Interference General Purpose Input/Output Printed Circuit Board PHYsical layer interface Synchronous Dynamic Random Access Memory Universal Asynchronous Receiver-Transmitter Man-Machine Interface Real Time Clock Power Amplifier Coder/Decoder Trunked Site Controller Request To Send (RS232 flow control signal) Clear To Send (RS232 flow control signal) Public Switched Telephone Network Technical Basis for Regulation Low Voltage Directorate Network Interface Controller Liquid Crystal Display Serial PORT of the digital signal processor Read Only Memory Not Connected Ear and Mouth Data Access Arrangement GLOSSARY AND ABBREVIATIONS PAGE 77 B. CONTROL CARD BLOCK DIAGRAM XFIN-BLADE-SM C. RADIO FREQUENCY HAZARD INFORMATION RF Hazard Test conducted by EMC Technologies (NZ) Ltd - test report no. 70232.1. Report date: 26 March 2007. Test report is as follows:
As per Section 1.1310 and Section 2.1091 certification of this transmitter is sought using the Controlled / Occupational exposure limits as detailed in OST/OET Bulletin Number 65 as a power of 100 watts is to be used in a fixed environment. Calculations have been made using the General Public/Uncontrolled Exposure limits. Minimum safe distances have been calculated below. Power density, W/m2 = E2/3770
- Occupational / Controlled Exposure limit will be 1.46 mW/cm2
(f/300 = 440 MHz/300)
- General Population / Uncontrolled exposure limit will be 0.29 mW/cm2
(f/1500 = 440 MHz/1500) The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V/m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:
E, V/m = ( (30 * P * G)) / d Controlled Uncontrolled E = 1.46 mW/cm2 = E2/3770 E = 0.29 mW/cm2 = E2/3770 E= 1.46*3770 E= 0.29*3770 E = 74.2 V/m E = 33.1 V/m The rated maximum transmitter power = 100.0 watts. Transmitter operated using a quarter wave whip antenna with a gain of 2.15 dBi (1.64). Controlled Uncontrolled d = (30 * P * G*DC) / E d = (30 * 100.0 * 1.64) / 74.2 d = (30 * 25.0 * 1.64) / 33.1 d = 0.94 metres or 94 cm d = 2.11 metres or 211 cm Result: Complies RADIO FREQUENCY HAZARD INFORMATION PAGE 79
1 2 | Users Manual | Users Manual | 3.60 MiB |
Xfin Blade SERVICE MANUAL XFIN-BLADE-SM Issue 1.0 October 2006 Team Simoco 2006 Team Simoco Ltd. Field House, Uttoxeter Old Road Derby DE1 1NH Tel: +44 (0) 1332 375 500 FAX: +44 (0) 1332 375 501 www.teamsimoco.com DECLARATION The performance figures quoted are subject to normal manufacturing and service tolerances. The right is reserved to alter the equipment described in this manual in the light of future technical development. COPYRIGHT All rights reserved. No part of this publication may be reproduced in any form or by any means without the prior written permission of Team Simoco Ltd. ERRORS AND OMISSIONS The usefulness of this publication depends upon the accuracy and completeness of the information contained within it. Whilst every endeavour has been made to eliminate any errors, some may still exist. It is requested that any errors or omissions noted should be reported to:
Technical Documentation Team Simoco Ltd Field House Uttoxeter Old Road Derby DE1 1NH UK Tel: +(44) 01332 375 627 E-mail: techsupport@teamsimoco.com DOCUMENT HISTORY Issue 0.1 0.2 0.3 0.4 1.0 PAGE 2 Date Sept 2005 Mar 2006 Apr 2006 Aug 2006 Nov 2006 Comments Skeleton document created. Draft submitted for internal review by Development. Diagrams added. Product Variants and Spares information received. Added details on PSTN & RJ45 serial ports, E&M linking corrected. DECLARATION XFIN-BLADE-SM WARNINGS AND CAUTIONS WARNING The Power Amplifier Module uses semiconductor devices containing Beryllium Oxide. Dust from this oxide is toxic and, if inhaled or skin contact is made, can be hazardous to health. No danger can arise from normal handling, but no attempt should be made to break open or tamper with these devices in any way. These items should not be discarded with industrial or domestic waste. To avoid RF injury, do not touch the Antenna when the Transmitter is in use. Do not operate transmitter with antenna disconnected RF burn hazard. WARNING The weight of a fully assembled Base Station in the wall mount is approx 10kg. Two people should be used to lift the unit in this form. WARNING When drilling walls, check first for any buried cables or pipes. WARNING Disconnect Mains Electricity before working on the unit with wall-mount or rack power supplies open. WARNING During disassembly and assembly, refer to the Torque Settings section in this manual. Caution Caution Preparing the radio for alignment will erase from the radio all customer PMR and Trunking configuration data (channel, signalling information etc). The only data retained by the Alignment Tool is the factory alignment data for the radio (DAC settings for TX power, front-end tuning etc). WARNINGS AND CAUTIONS PAGE 3 TABLE OF CONTENTS DECLARATION...............................................................................................................2 COPYRIGHT ...................................................................................................................2 ERRORS AND OMISSIONS ...........................................................................................2 DOCUMENT HISTORY ...................................................................................................2 WARNINGS AND CAUTIONS ........................................................................................3 TABLE OF CONTENTS ..................................................................................................4 1 INTRODUCTION.....................................................................................................8 1.1 General.................................................................................................................8 2 PRODUCT CODES.................................................................................................9 2.1 Serial number ......................................................................................................9 2.1.1 Hardware Variant Code.......................................................................................9 2.1.2 MAC Address......................................................................................................9 2.1.3 Modification State ...............................................................................................9 3 DESCRIPTION......................................................................................................11 3.1 Ventilation..........................................................................................................11 3.2 SRM9000 Sub-assembly...................................................................................12 3.3 Specifications....................................................................................................12 3.3.1 General .............................................................................................................12 3.3.2 Transmitter........................................................................................................13 3.3.3 Receiver............................................................................................................14 Front Panel Controls.........................................................................................14 3.4.1 LED Indicators ..................................................................................................14 3.4.2 LCD...................................................................................................................14 3.4.3 Control Knob .....................................................................................................15 3.4.4 MMI RJ45 Connector ........................................................................................16 3.5 Rear Panel Connectors.....................................................................................16 3.5.1 Tx/Rx.................................................................................................................17 3.5.2 Power................................................................................................................17 3.5.3 Fuses ................................................................................................................18 3.5.4 Ethernet ............................................................................................................18 3.5.5 RS232 Serial (D-Sub) .......................................................................................19 3.5.6 RS232 Serial (RJ45) .........................................................................................19 3.5.7 USB Connector .................................................................................................19 3.4 PAGE 4 TABLE OF CONTENTS XFIN-BLADE-SM 3.5.8 Line 1 & 2 (RJ45)..............................................................................................19 3.5.9 Facilities............................................................................................................20 3.5.10 PSTN Port (RJ11).............................................................................................21 4 TECHNICAL DESCRIPTION................................................................................23 4.1 MMI Board..........................................................................................................23 4.1.1 Description........................................................................................................24 4.2 Control Board....................................................................................................25 4.2.1 Circuit Board Layout .........................................................................................25 4.2.2 Circuit Description.............................................................................................26 4.2.2.1 LEDs.......................................................................................................26 4.2.2.2 Test Points..............................................................................................26 4.2.2.3 DSP ........................................................................................................30 4.2.2.4 Power......................................................................................................31 4.2.2.5 IXP..........................................................................................................31 4.2.2.6 CoDec.....................................................................................................32 4.2.2.7 Audio Interface........................................................................................32 4.2.2.8 PSTN Interface .......................................................................................33 4.2.3 Links .................................................................................................................33 4.3 Receiver and Transmitter Modules .................................................................36 4.3.1 Frequency Bands..............................................................................................36 4.3.2 Receiver............................................................................................................36 4.3.2.1 Front-end Filters and Rx Front-end Amplifier..........................................36 4.3.2.2 First Mixer and IF Section.......................................................................38 4.3.2.3 Quadrature Demodulator ........................................................................38 4.3.2.4 Receiver Audio Processing.....................................................................38 4.3.3 Transmitter........................................................................................................38 4.3.3.1 Drivers and PA Stages............................................................................39 4.3.3.2 Tx Power Control ....................................................................................41 4.3.3.3 Antenna Changeover and Harmonic Filter..............................................41 4.3.3.4 Transmitter Audio Processing.................................................................41 4.3.4 Frequency Synthesis ........................................................................................42 4.3.4.1 General...................................................................................................42 4.3.4.2 PLL .........................................................................................................42 4.3.4.3 VCO........................................................................................................42 4.3.4.4 Negative Bias Generator and Loop Filter................................................42 4.3.4.5 Phase Modulator.....................................................................................43 4.3.4.6 Reference Oscillator ...............................................................................43 4.3.5 RF Sub-Assembly Internal Control Logic ..........................................................45 4.3.5.1 DSP and FPGA.......................................................................................46 4.3.5.2 DSP Clock Oscillator...............................................................................46 4.3.6 RF Sub-Assembly Internal Memory ..................................................................46 4.3.6.1 Multiplexer ..............................................................................................46 4.3.7 RF Sub-Assembly Internal Power Supplies ......................................................47 4.3.7.1 Power On Function .................................................................................47 4.3.7.2 Power Lines ............................................................................................47 TABLE OF CONTENTS PAGE 5 4.4 Antenna Requirements.....................................................................................49 4.5 Power supplies..................................................................................................49 4.6 Configuration.....................................................................................................49 4.7 Adjustment and Alignment...............................................................................49 5 MAINTENANCE....................................................................................................51 5.1 Torque Settings.................................................................................................51 5.2 Disassembly ......................................................................................................51 5.2.1 To Remove the Blade from a Rack ...................................................................51 5.2.2 To Open the Blade............................................................................................52 5.2.3 To Remove a Tx or Rx Assembly .....................................................................52 5.2.4 To Remove the Control Board ..........................................................................53 5.2.5 To Remove the Front Assembly........................................................................53 5.2.6 To Remove the MMI Board...............................................................................54 5.2.7 To Remove a Fan .............................................................................................54 5.3 Re-Assembly .....................................................................................................54 5.3.1 To Fit an MMI Board .........................................................................................54 5.3.2 To Fit the Front Assembly.................................................................................54 5.3.3 To Fit the Control Board....................................................................................54 6 PRODUCT VARIANTS AND ACCESSORIES......................................................55 6.1 Variants..............................................................................................................55 6.2 Accessories.......................................................................................................55 6.2.1 TSF-ACCORD ..................................................................................................56 6.2.2 Duplexers, Combiners, Cavities, RSA Units .....................................................56 6.2.3 TSF-EARS ........................................................................................................57 6.2.4 TSF-PROG .......................................................................................................57 6.2.5 Blade Shelves ...................................................................................................57 6.2.6 TSF-1BS PSUTRAY .........................................................................................57 6.2.6.1 TSF-1BS PSUTRAY Specifications ........................................................57 7 SPARES ...............................................................................................................59 7.1 Service Concept................................................................................................59 7.2 Level-2 Spares Schedule..................................................................................60 7.2.1 XFIN BLADE (INTERNAL PSU VERSION).......................................................60 7.2.2 Assembly Item List............................................................................................61 7.3 Warranty.............................................................................................................62 7.3.1 Service Within and Out Of Warranty .................................................................62 7.3.2 Ancillary Items...................................................................................................62 7.3.3 Unpacking Equipment.......................................................................................62 7.4 Software Policy .................................................................................................63 PAGE 6 TABLE OF CONTENTS XFIN-BLADE-SM 8 LCD MENU OPERATION.....................................................................................65 8.1 Default Display ..................................................................................................65 8.2 Menu Structure..................................................................................................65 8.2.1 Alarms Menu.....................................................................................................66 8.2.2 Set IP Address..................................................................................................66 8.2.3 Set Position in Site............................................................................................66 8.2.4 Set Site ID.........................................................................................................66 8.2.5 Set System ID...................................................................................................66 8.2.6 Enable Screen Saver ........................................................................................66 8.2.7 Test Menu.........................................................................................................66 8.2.8 Exit....................................................................................................................66 PROGRAMMER GUIDE .......................................................................................67 9 9.1 Getting Started ..................................................................................................67 9.1.1 Main Screen......................................................................................................67 9.2 Database............................................................................................................67 9.2.1 Creating a New Database.................................................................................67 9.2.2 Opening a Database .........................................................................................68 9.3 Communications Settings................................................................................68 9.3.1 Connection Type...............................................................................................68 9.3.2 Serial Communications .....................................................................................68 9.3.3 Ethernet Communications.................................................................................69 9.3.4 Open Comms....................................................................................................69 9.4 State ...................................................................................................................69 9.5 Area Configuration............................................................................................70 9.5.1 Edit....................................................................................................................70 9.5.2 Add ...................................................................................................................70 9.5.3 Delete ...............................................................................................................70 9.5.4 Accept/Send......................................................................................................70 9.5.5 Get Record .......................................................................................................70 9.5.6 Send Configuration ...........................................................................................70 9.5.7 Get Configuration..............................................................................................71 9.5.8 Reset Configuration ..........................................................................................71 9.5.9 Navigation Buttons............................................................................................71 A. GLOSSARY AND ABBREVIATIONS...................................................................74 B. CONTROL CARD BLOCK DIAGRAM .................................................................75 TABLE OF CONTENTS PAGE 7 1 INTRODUCTION 1.1 GENERAL Figure 1.1 - Front view of the Xfin Blade. Brief Description: The Xfin Blade is a 1U trunking system with an integrated basestation and the capability to provide a control and/or traffic channel. It incorporates the established MPT1327 trunking standard with next generation hardware and VoIP technology. A trunked site consists of a number of Blade units which are inter-connected using standard CAT5 Ethernet cable. PAGE 8 INTRODUCTION XFIN-BLADE-SM 2 PRODUCT CODES The following information is displayed on the Type Approval Label located on the chassis behind the speaker housing. 2.1 SERIAL NUMBER The product serial number is broken down as follows:
Digits 1-3 Hardware configuration; XBI = Xfin 25W internal PSU, XB0 = Xfin 25W external PSU, XBP = Power Blade 100W Hardware version; P = prototype, 1-9, A-Z = production releases Software version; P = prototype, 1-9, A-Z = production releases Reserved Tx & Rx frequency band designation (alphanumeric) 4 5 6-7 8-9 10-11 Year of manufacture 12-13 Week of manufacture 14-16 Unique serial number 2.1.1 Hardware Variant Code The hardware code is a 5-digit code consisting of:
Digits 1-3 4-5 Hardware configuration; XBI = Xfin 25W internal PSU, XB0 = Xfin 25W external PSU, XBP = Power Blade 100W Tx & Rx frequency band designation (alphanumeric) 2.1.2 MAC Address Each Blade is assigned a unique 12-character alphanumeric MAC address. 2.1.3 Modification State Where changes are made to hardware or software between major releases, this will be recorded on the Mod State tick-boxes (A D) on the Type Approval Label. PRODUCT CODES PAGE 9 Receiver Transmitter Control Board removed High-power Amplifier or Integrated PSU Option Figure 3.1 - Layout of the Blade with the top lid 3 DESCRIPTION The Blade is a 1U high by 19 wide rack-mountable unit containing two SRM9000 sub-assemblies, a control card, and a fan bulkhead which mates with the angled front panel and MMI card. There is also provision for fitting a high power amplifier or integrated power supply option. 3.1 VENTILATION In order to provide full-power continuous operation in any orientation and in a 1U envelope, the Blade uses forced air-cooling. A pair of fans draws air in from an air intake located underneath the front lip of the angled front panel. This air is compressed by a baffle that directs the airflow underneath the heatsink of the SRM9000 sub assemblies. A second pair of fans is used for the high-power amplifier option if fitted. Fans are located to maximise the cooling for the transmitting module. Air is exhausted through a grilled area on the rear panel immediately below the electrical connectors. Vent holes in the internal baffle allow a small amount of air to bleed diagonally through the top section of the chassis to ensure that hot spots do not form on the component side of the sub-assemblies. The fans are mounted in a bulkhead located immediately behind the front panel. The front panel, MMI board and fan bulkhead are separately assembled and removed from the unit as sub-assemblies. The fans, loudspeaker and indicator LEDs are all controlled from the MMI PCB that fits into this sub-assembly. The fans are not only speed controlled to minimise noise and wear, but their speed is also monitored to provide early warning of failure. In normal operation, the fans are turned on to full speed to minimise any possibility of a stall, the speed is then turned down based upon equipment temperature. Even if the temperature is very low, fans are always kept running at a low speed. Temperature is sensed from a Thermistor located on the underside of the control board. This Thermistor protrudes into the airflow from the transmit PA module. When installing the Blade it is important to ensure that adequate ventilation is provided for each base station unit. A minimum free-area of 72cm2 is recommended per base station at the inlet AND at the outlet. This should be increased if air has to be drawn through ducts or has to be deflected around corners. Noise and dust build up can be reduced by keeping cabling and other obstructions out of the main airflows. There are no dust filters fitted in this product. If it is to be used in very dirty environments, then additional steps should be taken to prevent ingress of dust as this will affect thermal performance. Filters should only be used in external cabinets if they can be regularly maintained. 3.2 SRM9000 SUB-ASSEMBLY The RF performance of this product is derived from a pair of SRM9000 RF PCBs mounted on a Heatsink sub-assembly that is designed to permit continuous operation at full power. The sub-assembly also provides RF screening, so it is important that it is accurately assembled and reassembled. The sub-assembly has a plate attached to the rear edge with two quarter-turn fasteners for rapid removal. The unit is retained in the Blade chassis by the front edge of the Heatsink that inserts underneath the fan baffle, the rear of the subassembly is held in place by the quick release fasteners. These units are electrically identical to SRM9000 and are also fully interchangeable in the 25W power group (the Transmit module is different for the 100W systems). Control is provided via the 26-way ribbon connector. Power is supplied via the DB-15 connector and RF signals are coupled to the BNC sockets with double-screened cables. 3.3 SPECIFICATIONS 3.3.1 General Channel Bandwidth Modulation 12.5kHz (11K0F3EJN), 20kHz (14K0F3EJN) or 25kHz (16K0F3EJN) selectable per channel Freq. F3E (voice) pre-emphasised/flat, or FFSK data (1200 or 2400bps) E0: 66-88MHz. KM: 208-245MHz. TK: 400-450MHz. WR: 470-530MHz. 2.0ppm
-25C to +55C Operating (Full Spec.) -40C to +80C Storage 2 x 50 female N-type K1: 174-208MHz. R1: 335-375MHz. UW: 440-500MHz. AC: 136-174MHz. R0: 310-350MHz. TU: 400-480MHz Frequency Bands Stability Temperature Antenna Connect Environmental IP20 ingress protection, Humidity <95% non-condensing PAGE 12 DESCRIPTION Inputs/Outputs Type Approval Dimensions
(In Wall Mount) Weight XFIN-BLADE-SM Serial interface with 1x audio connection (RJ45 front panel) 2x line/audio (2/4-wire) connections with E&M signalling (2x RJ45 with internal shield) Programmable facilities connector (37 way D-type) 2x RS232 serial connections (9 way D-type, RJ45 with internal shield) Ethernet IP interface (10/100 base-T magnetic RJ45 with external shield) USB connector (Type-B USB Socket) PSTN connector (6/4 RJ-11 socket) Power connector (5 Pin, 25 D-shell) CE Type approvals to R&TTE Directive 1999/05/EC:
EN300-086 Radio, EN300-113 Data, EN301-489-05 EMC, EN300-
219 Signal, EN60950 Safety, TBR15, 17 and 21 Line 44mm(1U) High x 437mm Wide x 450mm Deep (Excluding cables and ears) 125mm High x 465mm Wide x 470mm Deep 6.95 kg 3.3.2 Transmitter 25W Transmit Power 1W to 25W in steps 2 levels (high/low), selectable per channel Tx Current Consumption Typical: 25W: 7A @13.6V (20C) Max: 25W: 10A @13.6V + 10.0A @27.3V (fans & audio on maximum) 100%
+1db to 3db of pre-emphasised 300 to 3000Hz on 25kHz channel, 300 to 2550Hz on 12.5kHz channel Duty Cycle Audio Distortion <5% at 1kHz, 60% deviation Audio Frequency Response Hum and Noise Transmit Rise Time
>40db (12.5kHz), 45db (25kHz)
<25ms 100W Transmit Power 10W to 100W in steps, selectable per channel Tx Current Consumption Typical: 100W: 5.7A @13.6V + 6.0A @27.3V (20C) Max: 100W: 8.85A @13.6V + 10.0A @27.3V (fans & audio on maximum) DESCRIPTION PAGE 13
+1db to 3db of pre-emphasised 300 to 3000Hz on 25kHz channel, 300 to 2550Hz on 12.5kHz channel 100%
Duty Cycle Audio Distortion <5% at 1kHz, 60% deviation Audio Frequency Response Hum and Noise Transmit Rise Time
>40db (12.5kHz), 45db (25kHz)
<25ms 3.3.3 Receiver Sensitivity Voice: 12db SINAD for 0.3Vpd (typically >20db) for 25kHz channel. Data: typical FFSK performance for <10-2 BER (<20%MER):
0.3Vpd 1200 baud in 12.5kHz & 1200/2400 baud in 25 kHz, 0.5Vpd 2400 baud in 12.5kHz channel. [Ref: EN300-113-1:9.1]
Typical: 1.0A (20C) Max: 1.55A (fans & audio on maximum)
>73db (25kHz), >63db (12.5kHz) Rx Current Consumption Selectivity Intermodulation >70db (ETSI method) Audio Response 3dB of de-emphasised 300 to 3000Hz with CTCSS Audio Output Blocking Hum and Noise 2Wrms internal monitor speaker
>95dB at 1Mhz
>40dB (12.5kHz) CCITT weighted 3.4 FRONT PANEL CONTROLS 3.4.1 LED Indicators On the front of the Blade there are the following 5 LED indicators (from left to right):
Legend Colour Power Green Tx Rx CC Alm Red Yellow Orange Red Description Indicates presence of 3.3V DC Indicates unit is keyed up Indicates RF signal received Control Channel Activity Alarm indicator access LCD alarms menu or connect PC to diagnose 3.4.2 LCD On the left side of the front panel is an LCD (Liquid Crystal Display) 2-by-20 Character Display. It indicates channel (control/traffic) and network status (master/slave). It also indicates volume level for the internal monitor speaker and presents a menu system. See the LCD Menu Operation section later in the manual. PAGE 14 DESCRIPTION XFIN-BLADE-SM 3.4.3 Control Knob The control knob is used in conjunction with the LCD Display to operate the menu system and provide volume control. DESCRIPTION PAGE 15 3.4.4 MMI RJ45 Connector This is an RJ45 connector located on the left side of the angled front panel. It offers a direct UART interface, a microphone input channel and an audio output channel. The pinout is listed below (where for the purpose of this table, pin 1 is the left-most pin when looking into the RJ45 socket). Pin Function 1 Tx-Data 2 Rx-Data Pin Function 3 N/C 4 Mic Gnd Pin Function 5 6
+Vout Audio Out Pin Function 7 Gnd 8 Audio In 3.5 REAR PANEL CONNECTORS Tx GND Ethernet Power USB Serial Facilities Line 1 2 PSTN Rx Figure 3.2 - Layout of the Xfin Blade rear panel PAGE 16 DESCRIPTION XFIN-BLADE-SM Figure 3.3 View of the Xfin Blade rear panel. 3.5.1 Tx/Rx The antenna connections on the Blade are provided with 50 female N-type sockets. Mating connectors should be galvanically compatible with nickel outer and gold centre pin to minimise passive inter-modulation. A minimum of 85dB transmit-receive isolation should be provided by the antenna system and associated filters. It is recommended that a good quality flexible co-axial cable is used, e.g. with double-
screening braid and multi-strand copper inner. 3.5.2 Power This is a D-type housing with 5 stud-pin locations. From left to right (looking at the rear panel) they are:
Pin Description 1 Power amp (option). +24VDC
(nom) 1 5 DESCRIPTION PAGE 17 Power amp (option). DC ground Chassis Ground
+12VDC(nom) input 0VDC input Notes:
2 3 4 5 12VDC nominal is normally supplied with 13.6VDC for battery float charge reasons. 24VDC nominal is normally supplied with 27.3VDC for battery float charge reasons. 3.5.3 Fuses Fuse F1 on the fuse-board is a 2A quick-blow, 20 x 5mm component and protects the 12V line to the MMI PCB. Fuse F2 on the fuse-board is a 10A quick-blow, 20 x 5mm component and protects the 24V line to the Power Amplifier, if fitted Fuse F5 on the Xfin Control Card is a 3.15A quick-blow, 20 x 5mm component and protects the 12V line to the PCB. In event of failure, the reason for the failure should be investigated prior to replacement. The fuse should only be replaced with a correctly specified component. 3.5.4 Ethernet This is a 10/100 base-T RJ45 connection. This is a switch (not a NIC) configuration care should be taken to use the correct cable (crossover or straight-through) when connecting to a network. The use of shielded cables is recommended, especially for VHF installations. The two indicator LEDs, integrated into the connector, show 100Mbps bandwidth detection and traffic activity. A third LED, on the Control Card shows if a connection is present. 1 8 Pin Description 1 2 3 4 5 6 7 8 Eth Rx-Data, balanced input 1 Eth Rx-Data, balanced input 2 Eth Tx-Data, balanced output 1 NC NC Eth Tx-Data, balanced output 2 NC NC PAGE 18 DESCRIPTION XFIN-BLADE-SM 3.5.5 RS232 Serial (D-Sub) This is a standard DB-9 female RS-232 socket with the following pins connected for DTE operation:
5 9 1 6 Pin Description 1 NC 2 Tx Data, output 3 Rx Data, input 4 NC 5 GND Pin Description 6 NC 7 CTS, input 8 RTS, output 9 NC 3.5.6 RS232 Serial (RJ45) This is a standard RJ45 socket with the following pins connected for DTE operation:
Pin Description 1 NC 2 Tx Data, output 3 Rx Data, input 4 NC 5 GND Pin Description 6 NC 7 CTS, input 8 RTS, output 1 8 3.5.7 USB Connector The IXP420 processor's USB is integrated, USB 1.1-compliant and supports all standard device requests issued by any USB host controller. It is an USB device-only controller. The interface supports full-speed operation and 16 endpoints and includes an integrated transceiver. There are six isochronous endpoints (three input and three output), one control endpoint, three interrupt endpoints, six bulk endpoints (three input and three output). The connector is a standard 4-pin socket (pin 1 is the bus voltage rail, 2 & 3 are the positive and negative signals of the differential USB receiver/driver respectively and pin 4 is ground). Note: ensure that the current Blade software supports this interface before attempting to use it 3.5.8 Line 1 & 2 (RJ45) Each of these sockets provides a pair of barriered line audio connections via RJ45 connectors. Opto-isolated E&M signalling is also available on these connectors. A pair of lines is provided so that the unit can support active line combining. To provide DC Ground and Bias for E&M Signalling DESCRIPTION PAGE 19 Caution When the following is performed, the line barrier is breached and the Where line barrier is not required, two fuses may be fitted in fuse-holders F3 and F4 of the control PCB (20 x 5mm, 50mA) to provide DC ground and bias for E&M signalling. equipment must NOT be connected to Public Networks. 1 8 Pin Description 1 2 3 4 5 6 7 8 E+
M-
4 wire Tx 4 wire Rx or 2 wire Tx/Rx 4 wire Rx or 2 wire Tx/Rx 4 wire Tx M+
E-
3.5.9 Facilities This 37-way D-type can be programmed for any combination of digital inputs and outputs. Audio signals are present on certain pins, these require an adapter cable in order to re-route signals and become plug compatible with certain products. 19 37 1 20 Pin Description 1 Pin Description 14 Tx+ line connection A 0v Rx+ line connection A Rx+ line connection B Tx+ line connection B Tx- line connection B I/O 2 I/O 4 2 3 4 5 6 7 8 CTCSS decode defeat RSSI O/P Channel line C6
(MSB) Channel line C4 Channel line C2 Channel line C0
(LSB) Tx- line connection A Aux Tx Pin Description 27 I/O 5 28 29 30 31 32 33 34 I/O 6 Talkthrough command Squelch defeat command I/O 7 Aux Rx I/O 8 Analogue Out 15 16 17 18 19 20 21 PAGE 20 DESCRIPTION XFIN-BLADE-SM 9 10 11 12 13
+13.6v unswitched 22 Tx key command Alarm 1 0v Alarm 2 23 24 25 26 Rx- line connection A Rx- line connection B Squelch I/O 1 I/O 3 35 Channel line C5 Channel line C3 Channel line C1 36 37 3.5.10 PSTN Port (RJ11) This is a 6/4 RJ11 socket with the following pins connected for PSTN operation:
Pin Description 6 NC 1 6 Pin Description 1 NC 2 NC 3 Tip (Snoop+) 4 Ring (Ring-) 5 NC DESCRIPTION PAGE 21 Power Connector 4 TECHNICAL DESCRIPTION 4.1 MMI BOARD Fan Connectors MMI Connector LEDs Figure 4.1 -
MMI Board Layout Control Knob LCD Display Handset Jack 4.1.1 Description The purpose of the MMI board is to provide the Man Machine Interface between the control card and the user. The MMI board contains 5 LEDs for user diagnostics. It contains an LCD for displaying an interactive menu, which is accessed via a control knob. An audio amplifier is provided to drive a loud speaker at up to 2W, with volume adjustment via the control knob. An RJ45 interface for a serial port is also present. The MMI board has a secondary function of providing the interface and drivers for the fans. Connection to the main control board is via a 14-way ribbon cable. PAGE 24 Figure 4.2 Block Diagram of MMI Board TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.2 CONTROL BOARD 4.2.1 Circuit Board Layout Figure 4.3 -
Control Board Layout with Main Sections Labelled TECHNICAL DESCRIPTION PAGE 25 4.2.2 Circuit Description I/O IXP DSP SRM CPLD Control Ethernet Interface Analogue Digital I/O Digital I/O Serial Port Serial Control See the Appendix for a more detailed block diagram representing the control card. 4.2.2.1 LEDs LED DL1 indicates Ethernet connection (LINK). LED DL2 indicates the Flash device at U46 is being written to. 4.2.2.2 Test Points Figure 4.4 Block Diagram of Control Board Line Barrier Line Barrier BS Audio 1 BS Audio 2 Line Audio 1 Line Audio 2 CODECs PAGE 26 TECHNICAL DESCRIPTION Test Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Monitors XFIN-BLADE-SM Signal Type 3.3V Digital 3.3V Digital D.C. Clock Signal 3.3V Digital 3.3V Digital 3.3V Digital Clock Signal 3.3V Digital 3.3V Digital Clock Signal 3.3V Digital 3.3V Digital Clock Signal 3.3V Digital 3.3V Digital Active-Low INVALID Pin on RS232 chip (U1) Active-Low INVALID Pin on RS232 chip (U2) Transmit Centre-Tap on Magnetic RJ45 (P3) Output 4 of Clock Driver (U12) Bank B Inverted Output of Digital I/O Shift Register (U10) Inverted Output of Digital I/O Shift Register (U17) Inverted Output of Digital I/O Shift Register (U11) Output 4 of Clock Driver (U12) Bank B DSP PF10 IXP_IRQA output from CPLD (U22) IXP_CLK_CPLD Signal to CPLD (U22) IXP_IRQB output from CPLD (U22) GPIO_IN4 Signal to CPLD (U22) Feedback to Clock Driver (U12) SPI_MISO signal to IXP GPIO(2) TX_DATA signal for High Speed Serial Port 1 on the IXP
(U34) RX_CLK signal for High Speed Serial Port 0 on the IXP (U34) 3.3V Digital SPI_CS_ADC signal from IXP GPIO(9) 3.3V Digital 3.3V Digital GPIO_IN7 Signal to CPLD (U22) IXP_RD_N Signal to CPLD (U22) 3.3V Digital I2C CLK (SCL) 3.3V Digital 3.3V Digital SPI_CS_DS from IXP GPIO(3) RX_DATA signal for High Speed Serial Port 1 on the IXP 3.3V Digital
(U34) RTS for DSP Serial Port from DSP PF3 Off-Hook signal OH_N from DSP PF8 SPI_CS_DM Spare I/O Pin CIO2 on CPLD (U22) JTAG TDO Signal from CPLD (U22) TX_FRAME signal for High Speed Serial Port 1 on the IXP
(U34) TX_CLK signal for High Speed Serial Port 0 on the IXP (U34) 3.3V Digital RX_CLK signal for High Speed Serial Port 1 on the IXP (U34) 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital TECHNICAL DESCRIPTION PAGE 27 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital PF1 on the DSP (U28) I2C Data (SDA) RX_FRAME signal for High Speed Serial Port 1 on the IXP
(U34) Active-Low RING signal (indicating half-wave ringing detect output signal) from PSTN interface (U7) GPIO_IN6 Signal to CPLD (U22) SPI_CS_DAC from IXP GPIO(10) RX_FRAME signal for High Speed Serial Port 0 on the IXP
(U34) TX_CLK signal for High Speed Serial Port 1 on the IXP (U34) 3.3V Digital RX_DATA signal for High Speed Serial Port 0 on the IXP 3.3V Digital
(U34) 3.3V Digital DSP Memory Select DSP_AMS3_N to CPLD (U22) 3.3V Digital Spare I/O Pin CIO3 on CPLD (U22) TDI JTAG Signal to CPLD (U22), connected to IXP GPIO(11) 3.3V Digital TX_FRAME signal for High Speed Serial Port 0 on the IXP 3.3V Digital
(U34) DSP_IRQA output from CPLD (U22) GPIO_IN5 to CPLD (U22) TMS JTAG Signal to CPLD (U22) TX_DATA signal for High Speed Serial Port 0 on the IXP
(U34) ENET0_INT_N to IXP GPIO(4) Audio Output 1 from Codec C2 (U52) after passing through the 1st Op-Amp stage DSP_IRQB output from CPLD (U22) TCK JTAG Signal to CPLD (U22) CPLDI_CS_N DSP_IRQA output from CPLD (U22) GPIO_IN3 to CPLD (U22) GPIO_IN2 to CPLD (U22) Audio Input 2 to Codec C2 (U52) prior to being converted from single-ended to differential IXP Write Strobe IXP_WR_N Active-Low Global Reset Anti-Aliasing Filter Selector, generated by DSP PF11 SPI_MOSI generated by IXP GPIO12 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital Audio Signal 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital 3.3V Digital Audio Signal PAGE 28 TECHNICAL DESCRIPTION XFIN-BLADE-SM Audio Input 1 to Codec C2 (U52) prior to being converted from single-ended to differential SPI_CLK 5V Bias for 10V Op Amps Audio Output 2 from Codec C2 (U52) after passing through 1st Op-Amp stage Analogue 3.3V A3V3 Analogue Ground AGND Analogue 2.5V Supply Rail (Bias for 5V Op Amps and ADC) A2V5 Codec Select Strobe CODSE generated by DSP PF4 Digital 5V supply rail (used by 3.3V Switched Mode Power Supply) 5V0D Analogue 5V Supply Rail (used by ADC and 5V Op Amps) A5V Codec Reset CODRST_N generated by DSP PF5 Digital Ground DGND Pin 23 of P5 Rx Radio Header Pin 21 of P5 Rx Radio Header Pin 3 of P5 Rx Radio Header I2C Data (I2C_SDA) Analogue 2.5V Supply Rail (Bias for 5V Op Amps and ADC) A2V5 Digital Ground DGND Pin 23 of P6 Tx Radio Header Pin 21 of P6 Tx Radio Header Pin 3 of P6 Tx Radio Header TX_PTT inputted to DSP PF15 I2C CLK (SCL) Pin 20 of P5 Rx Radio Header 3.3V Digital Voltage Supply 3V3 RX_EXTOUT inputted to DSP PF9 Pin 6 of P6 Tx Radio Header Digital Ground DGND Audio Signal 3.3V Digital D.C. Audio Signal D.C. D.C. D.C. 3.3V Digital D.C. D.C. 3.3V Digital D.C. 3.3V Digital D.C. D.C. 3.3V Digital 3.3V Digital D.C. 3.3V Digital D.C. 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 TECHNICAL DESCRIPTION PAGE 29 4.2.2.3 DSP The DSP on the Xfin control card is a Blackfin device manufactured by Analog Devices; it runs at speeds of up to 500 MHz. The DSP is responsible for all audio processing including mixing, FFSK encoding/decoding, DTMF encoding/decoding, supervisory tone generation, audio emphasis and speech processing for VOIP between Blades. Booting The DSP downloads the application code from the IXP Network Processor at start up and runs the software entirely in internal memory. RS232 Serial Interface (Rear RJ-45) The rear of the Blade contains a standard RJ-45 Serial connection in order that an engineer may connect a PC to the DSP via an RJ-45 to DB-9 cable. Debug commands may then be issued to the DSP for diagnostic information. CPLD Interface Communications between the IXP Network Processor and the DSP are performed by connecting the data bus on the IXP to the host interface (Lattice LC256V-75T100 CPLD) connecting to the DSP. The IXP writes to the host interface, triggering a DMA on the DSP to copy the data to a buffer. After a packet has been sent, the DMA on the DSP copies data from an outgoing buffer to the host interface port that is read by the IXP. This enables high-speed communications without impacting the performance of the DSP. PAGE 30 TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.2.2.4 Power The control board requires a 12V 2000ma supply. Linear regulators are provided to reduce the input voltage down to 10V and 5V for the audio circuits. The input voltage supply is also regulated down to 3.3V for the digital logic via a switched mode power supply. The 1.3V supply for the IXP processor core is generated by a regulator off the 3.3V rail. The 1.2V supply for the DSP core is generated by a diode (controlled by the DSP) off the 3.3V rail. 4.2.2.5 IXP Description The main processor is an IXP42x processor manufactured by INTEL. It consists of a central ARM based processor supported by separate network processor engines for supporting the Ethernet and USB ports. The IXP runs the application code under MontaVista Linux. The application code consists of Trunked Site Control, Inter-Blade Communications, Site Configuration, Fan Control and the LCD menu system. The network processor also provides support to the DSP. The IXP is connected to external flash memory that stores the IXP software. Reset of the IXP is performed reset circuitry monitoring voltage supplies. Watchdog The IXP processor has its own internal watchdog. Fan Control The IXP performs fan control via Maxim Fan Regulator devices, monitoring the temperature of the airflow from the transmitter module using a thermistor (RT1). If the temperature is too high or low, the speed of the fans is adjusted accordingly. Fans are not allowed to stop during normal operation. Each fan generates a tachometer output allowing software to detect a fan failure or potential failure by monitoring fan speed. If one fan fails the speed of the second fan will be increased to compensate. Analogue Outputs Two analogue outputs are provided by a dual-channel Digital to Analogue Converter
(U41). They provide analogue outputs to the Facilities Connector to output, for example, the RSSI level. Analogue Inputs The ADC (U56) has eight analogue inputs available, which are currently used to provide voltage monitoring of the thermistor and the 12V unregulated supply, receive inputs from the PA header and provide feedback of the analogue outputs. Digital I/O A set of shift registers (U10, U11, U15, U16 and U17) is controlled by the IXP via the CPLD to provide digital I/O to the Facilities Connector as well as internal controls. Ethernet interface TECHNICAL DESCRIPTION PAGE 31 The IXP controls an LXT971 PHY chip (U20) that provides a 10/100 Base-T Ethernet interface. The PHY is connected to an RJ-45 socket with built-in magnetics; the socket also presents two external LEDs which are configured to indicate activity and 10/100 status. RS232 Serial Interface (DB-9) The rear of the Blade contains a standard 9-way Serial connection in order that a straight through cable may be used to connect a PC to the IXP. UART Serial Interfaces (Front Panel RJ-45) The IXP presents a serial port interface to the RJ-45 port in the front panel. 4.2.2.6 CoDec Audio received from either or both of the line ports and the PSTN interface is fed into a chain of 3x AD73322L codecs (U52, U53 and U54) that is connected to the DSP via its SPORT (Serial PORT) interface serial link. The DSP performs audio signalling to the line equipment or patches the audio to the radio module. Handset audio is fed via a codec (U53) into the DSP allowing it to be mixed to line or the radio modules under software control. Audio is also fed to the speaker on the front panel. The codec contains built-in analogue gain adjustment under software control. 4.2.2.7 Audio Interface General External audio equipment is connected to either of the two independent audio ports which are presented barriered on the RJ45 connectors, and un-barriered on the 37-way Facilities Connector. Two and Four Wire The barriered connections are link selectable as either two or four wire. In two-wire mode the balance of the hybrid can be set manually by moving LN18 (LN16 for port 2) to position 2-3. If a test tone is generated to line, the reflected audio can be monitored on TP57 (TP62 for port 2) and variable resistor R128 (R135 for port 2) can be adjusted to give the minimum level. At the time of configuration, the audio levels of the line ports must be set for optimal performance. In line-to-air mode, it must be possible for a -10dBm signal to generate a 2.5kHz (full-scale) deviation. In loopback mode, an undistorted signal up to -10dBm should be re-outputted with unity gain; this can be configured by inputting a -14.4dBm signal
(equivalent to 1.5kHz/60% deviation over air) into the line port and altering the gain level until an equivalent -14.4dBm signal is seen at the output. E & M The control board contains opto-isolated digital inputs (U9, U14) and outputs (U8, U13). In order to support local connections where an external bias voltage is not present, Fuse-
PAGE 32 TECHNICAL DESCRIPTION XFIN-BLADE-SM 3000 Vrms rated isolation voltage; 2000V/s rated surge rise time. links F3 and F4 can be fitted to provide bias volts. This allows the unit to use DC signalling. 4.2.2.8 PSTN Interface A Clare DAA chip (U7) provides a PSTN interface. An audio channel links the telephone port to a codec (U54). At the time of configuration, the audio levels of the PSTN interface should be set for optimal transmission and reception. PSTN Interface Specifications:
Isolation Characteristics Continuous Output Current Ringing Signal Detect Level Frequency Response Ringer Equivalence Return Loss Insertion Loss Tx/Rx Level 5 Vrms (min for 68Hz applied to tip and ring); 28 Vrms (min for 15Hz applied across tip and ring). 30 to 4000Hz (166Hz to 4000Hz for Snoop Circuit). 26 dB (typical, into 600 at 1800Hz).
-0.4dB to 0.4dB (Tx and Rx, 30 to 4000Hz). 2.2Vp-p (max) for a single-tone sine wave. 130 mA (max where Rzdc = 8.2). 0.01B REN. 4.2.3 Links For Fuse Links F3 and F4, see E & M above. Link In LN1 Out LN2 In Out LN3 In Out LN4 In Out LN5 In Remarks Line 2 M-Wire bias GND -
requires F3 fit No bias - barrier is not breached Line 1 M-Wire bias GND -
requires F3 fit No bias - barrier is not breached Line 2 E-Wire +V Bias (input supply volts) - requires F4 fit No bias - barrier is not breached Line 1 E-Wire +V Bias (input supply volts) - requires F4 fit No bias - barrier is not breached Capacitor link for Line 1 UK Complex Impedance Select TECHNICAL DESCRIPTION Default
Link LN11 In Out Remarks Line 2 Two-Wire 600R Impedance select LN12 In Out Line 2 UK Complex Impedance select LN13 In Out Line 2 Four-Wire RX Impedance Enable Line 2 Two-Wire LN14 In Out Line 2 Complex Imped. Hybrid Balance LN15 1 - 2 Line 1 Four-Wire Mode Default
PAGE 33 LN6 Out In Out Line 1 Four-Wire RX Impedance Enable Line 1 Two-Wire LN7 In LN8 Out In Out LN9 In LN10 Out In Out Line 1 UK Complex Impedance Select Line 1 Two-Wire 600R Impedance select Line 2 Complex Impedance Hybrid Balance Capacitor link for Line 2 UK Complex Impedance Select
2 - 3 LN16 1 - 2 2 - 3 LN17 1 - 2 2 - 3 LN18 1 - 2 2 - 3 Line 1 Two-Wire Mode Line 2 Two-Wire 600R Imped. Hybrid Balance Line 2 Adjustable Hybrid Balance Line 2 Four-Wire Mode Line 2 Two-Wire Mode Line 1 Two-Wire 600R Imped. Hybrid Balance Line 1 Adjustable Hybrid Balance
Note: Unless specifically ordered otherwise, the Control Board is supplied in the default configuration shown in this table.
PAGE 34 TECHNICAL DESCRIPTION XFIN-BLADE-SM TECHNICAL DESCRIPTION PAGE 35 4.3 RECEIVER AND TRANSMITTER MODULES 4.3.1 Frequency Bands The Blade is supplied with a matched pair of radio sub-assemblies fitted. The designated frequency bands are:
66 - 88 MHz E0 Band 136 - 174 MHz AC Band 174 - 208 MHz K1 Band 208 - 245 MHz KM Band 310 - 350 MHz R0 Band 335 - 375 MHz R1 Band 400 - 450 MHz TK Band 400 - 480 MHz TU Band 440 - 500 MHz UW Band 470 - 530 MHz WR Band The following text refers to the components and circuits within the RF sub-assemblies only. For additional information, refer to the SRM9000 Service Manual [1]. The Rx and Tx Modules are equivalent and interchangeable for a given power classification (25W or 100W). They are connected to the Control Board via a 26-way Ribbon Cable that carries analogue audio, digital audio and control signals. Power connections are made via a 15-way, D-type connector and RF connections are made via BNC sockets. RF connections are taken to the rear of the Blade via double-
screened cables terminated with female N-types. 4.3.2 Receiver Refer to Figure 3.5. 4.3.2.1 Front-end Filters and Rx Front-end Amplifier The receiver input signal from the antenna passes through the antenna filter comprising L10, L11, L12 and associated tuning capacitors. With a transceiver module in receive mode, diodes D3, D4 and D5 in the antenna switch are reverse biased allowing the receiver input signal to be coupled through to the front-end with minimal loss. The overall insertion loss of the antenna filter and switch is approximately 0.8dB. Front-end selectivity is provided by varactor tuned bandpass filters at the input and output of the RF amplifier. Front-end tuning voltages are derived from the alignment data stored in the radio. The DSP processes this data to optimise front-end tuning relative to the programmed channel frequencies that may be changed at any time without re-aligning the radio. To achieve the required varactor tuning range an arrangement of positive and negative bias power supplies is used to provide a total bias across the varactors of up to 14.0VDC. A fixed 2.5V positive bias derived from the 5.0V supply and voltage divider R425/426 is applied to the cathodes of the varactor diodes. The negative bias supply originates at the DSP/FPGA as a composite digital tuning signal (FE TUNE) containing the data for the four front-end tuning values TUNE 1 to 4 for the particular channel frequency selected. The level is dependent on channel frequency and tuning and varies between +0.1 and +3.0V. This signal then passes through buffer U901A and level translator Q900 to Q903 where it is converted to a high level (-0.5 to -11.5V) negative equivalent of the original signal. PAGE 36 TECHNICAL DESCRIPTION XFIN-BLADE-SM l i i i i
l l i I
I I
o t r o o T F x T Q Q o t C S O m o r F D O M m o r F 2 0 9 U 1 0 7 U w S w S r e f f u B h c t i h c t i O
. L n I o d u A P C X U A s r e t l i C G A 6 1 _ 0 0 0 9 f e R C F A 1 0 7 U 1 0 4 U 0 0 8 U o d u A c M 2 1 8 Q 2 0 4 Q 1 0 4 Q 1 D O M X T r e f f u B r e x e p i t l u M F A x R O C V X T o T p m A F e o P
4 B 3 0 1 U B 1 0 9 U C 3 0 1 U o d u A n o i t p O z H M 0 9 z H M 5 4 C E D O C p m A c M F A x T
x R 2 0 4
1 0 4 Z P S D A G P F m o r F C A D C D A r o t a u d o m e D The -12.0V rail of the level translator is generated by U300B/C with D304 to D306 providing the required voltage multiplier effect. The high level negative signal is then split into the four individual front-end negative DC values under software control by multiplexer U902 and associated storage capacitors C904 to C907 before being applied to the anodes of the front-end tuning varactors. r e s s e h t n y S
1 1 8
0 1 8 Q s s a P d n a B s s a p d n a B 5 0 6
4 0 6 Q 1 1 6
0 1 6 D r e x e p i t l u M m o r F 4
3
, 2
, 1 e n u T 1 1 L
, 0 1 L a n n e t n A a n n e t n A r e k a e p S w S r k p S p m A F R p m A F A H T N Y S 2 T U O R K P S 1 T U O R K P S P O F A r e f f u B r e f f u B 2 1 L
x R
x T N O R K P S 1 0 6 Q 0 0 6 Q 7 0 6 Q 0 0 4 Q r e x M 3 0 8 U 3 0 8 U 0 0 4 T t u O D U A 5 D
O C V O C V O C V p m A p m A
, 3 D x u A o r t n o C 3 1 8 r e t l i r e t l i r e t l i h c t i h c t i h c t i h c t i A P x T w S w S w S 2 0 9 U 4 D 5 U x R x R O C V s t l o V P P C U S P x R F F F o T
i i l l Figure 3.5 - VHF/UHF Receiver Block Diagram TECHNICAL DESCRIPTION PAGE 37 The RF front-end amplifier stage comprises a low-noise transistor amplifier (Q400), which is compensated to maintain good linearity across the required frequency bands and temperature range. This provides excellent intermodulation and blocking performance across the full operating range. The gain of this stage is typically 17dB for both UHF and VHF versions. 4.3.2.2 First Mixer and IF Section The output of the last front-end bandpass filter is coupled into single balanced mixer T400/D413 which converts the RF signal to an IF frequency of 45MHz. The local oscillator injection level is typically +8dBm at T400 pin 1 with low side injection used for UHF and high side for VHF. Following the mixer is IF amplifier Q401 which provides approximately 15dB of gain and in association with its output circuitry presents the required load conditions to the 4 pole 45MHz crystal filter Z401/402. 4.3.2.3 Quadrature Demodulator Additional IF gain of approximately 30dB occurs at U401, which is a dedicated IF AGC amplifier/Quadrature, Demodulator configured for single-ended input and output operation. The AGC voltage for U401 is derived from the RSSI function of the DSP via AUX CTL and multiplexer U902. The onset of AGC operation occurs when RF input signal levels at the antenna exceeds -90dBm. Conversion of the 45MHz IF signal to I and Q baseband signals is carried out by the demodulator section of U401. The 90MHz local oscillator signal is generated by VCO Q402 which is phase locked by the auxiliary PLL output of U701 via feedback signal AUX LO2. 4.3.2.4 Receiver Audio Processing All receiver audio processing and filtering functions are performed by the CODEC U800 under the control of the DSP. The receiver I and Q analogue baseband signals are converted to digital signals by the CODEC ADC before being applied to a series of digital filters which provide the final stage of adjacent channel filtering, high pass and low pass filtering and mute noise processing for narrow and wideband operation. The processed signals are then converted to analogue audio signals by the CODEC DAC and are applied to conventional audio amplifiers U803A/B and the speaker amplifier U5. The speaker circuits are not used in the Blade. The carrier and signalling mute functions are performed by Q810/811/813 under DSP control with additional receiver muting to U803B being applied by U103C when the mobile is in transmit mode. Flat audio (20Hz 5.8kHz) is provided to S1-6 via amplifier U803A. De-emphasis is performed on the Control Board. Software functions are used to filter off signals below 300Hz and above 3kHz. 4.3.3 Transmitter Refer to Figure 3.6. PAGE 38 TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.3.3.1 Drivers and PA Stages The RF output level from the VCO buffer Q604 is typically +5dBm (UHF) and +8dBm
(VHF). TX buffer Q606 increases this level by approximately 3dB (UHF) and 11dB (VHF) and also provides additional VCO isolation. The following section of the TX buffer Q612 is controlled by the transmitter power control loop and Q609. Q609 is normally saturated in transmit mode so there is no minimum gain control applied to this stage. The gain of Q612 is typically 10dB (UHF) and 15dB (VHF) but the output level is reduced by input and output resistive attenuators to limit the PA driver input level to typically +20dBm. The gain of PA driver Q12 is controlled by the power control loop to ensure that transmitter output power remains within defined limits. The PA driver output level is typically +25dBm. PA module U2 utilises three stages (UHF) and two stages (VHF) to achieve the required final RF output power level of +44dBm (25 watts). Power output settings are derived from alignment data stored in flash memory during the initial factory alignment. The DSP processes this data to optimise the power output level relative to the programmed channel frequencies which may be changed at any time without retuning the radio. An active filter comprising Q14, 17,18 and 19 provides isolation to minimise power supply noise at the PA. This is achieved by maintaining a voltage differential of approximately 1V across Q14 and indirectly filtering its gate voltage. Q14 is switched on only during transmit via R523 to minimise receiver power requirements. TECHNICAL DESCRIPTION PAGE 39 2 0 9 U 7 1 _ 0 0 0 9 t e S r e w o P x T m o r F l r e x e p i t l u M a n n e t n A r e t l i F 2 1
1 1
0 1 L m o r F A G P F i o d u A c M x T i r e f f u B B 3 U a n n e t n A h c t i w S 5
4
3 D l r e w o P o r t n o C r o t c e t e D 6 D A P x T h c t i w S
r e t l i F 9 1
8 1
7 1
4 1 Q A P X T 2 U r e v i r D A P x T 2 1 Q r o t a r a p m o C A 3 U 6 1
5 1 Q l r e w o P o r t n o C 0 1
3 Q i r e x M x R o T x R 1 O L x T p m A
r e f f u B
9 0 6
6 0 6 Q 2 1 6 x R
x T h c t i w S 1 1 6
0 1 6 D O C V r e f f u B 5 0 6
4 0 6 Q s t l o V l o r t n o C O C V P P C O C V x T 2 0 6 Q 1 D O M X T e t a G r e t r e v n I 0 2 Q H T N Y S o t 1 0 7 U i r e s s e h t n y S r e f f u B 7 0 6 Q O C V x T h c t i w S 3 0 6 Q 1 N I D U A e t a G 8 0 1 U Q
P S D A G P F m o r F Q I m o r F l r o t a u d o m e D 1 0 4 U I F A x T
x R h c t i w S B 3 0 1 U
C A D C D A C E D O C 0 0 8 U F A x R h c t i w S C 3 0 1 U F A x R i o d u A s n o i t p O x T a t a D
2 N I D U A e t a G 7 0 1 U p m A c M i 2 1 8 Q N O 1 D O M
) l o r t n o C F A x R
x T
Figure 3.6 - VHF/UHF Transmitter Block Diagram PAGE 40 TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.3.3.2 Tx Power Control Output power is stabilised by a power control feedback loop. L1, R54, a printed circuit transmission line, D6 and associated components comprise the power detector with Q3/10, U3 and associated components providing the power setting and control sections. Forward and reverse power is sampled by the power detector and applied as a DC voltage to the inverting input of comparator U3A. The TX PWR SET voltage, which is a DC voltage proportional to the programmed TX power setting, is applied to the non-inverting input of the comparator. PA module output level changes due to supply voltage, load or temperature variations are detected and applied to the comparator which proportionally adjusts the PA driver (Q12) supply, and therefore the PA drive level, via Q10/Q3. High temperature protection is provided by Thermistor R452 which progressively reduces the power level if the PA module temperature becomes excessive, approximately 86C case temperature. Q15 and Q16 provide for dual power control time constants necessary for good power ramp and decay characteristics. 4.3.3.3 Antenna Changeover and Harmonic Filter The antenna changeover circuit consisting of pin diodes D3/D4/D5 is switched by Q4/Q8/Q11 and associated circuitry allowing the transmitter output to be coupled to the antenna while providing isolation for the receiver input. With the transmitter switched on, the diodes are forward biased allowing power to be coupled through to the antenna and isolating the receiver by grounding its input at C28. The short circuit at the receiver input is transformed to an effective open circuit at D3 by L13, which minimises transmitter loading. With the transmitter switched off the diodes are reverse biased allowing the receiver input signal to reach the receiver front-end with minimal loading and loss. The harmonic rejection low pass filter comprises L10/11/12 and associated capacitors. 4.3.3.4 Transmitter Audio Processing Microphone audio input signals of 40mV RMS, with a source impedance of 470 ohms, are provided at the microphone input (AUD IN1) by the Control Board. Pre-emphasised flat-
audio, (300Hz 3kHz; 20Hz 3kHz; or 20Hz 5.8kHz) is provided to the transmitter by the Control Board via the 26-way ribbon cable. U108 is a control gate for the microphone audio signals. AUD IN2 is the external audio options and data input used by the Blade Control Board. This is controlled by gate U107. Inverter Q20 ensures that the mic. audio is muted when the data or audio options signals are active. The AUD IN2 input level and source impedance is the same as the microphone input. Alternatively, the Blade can bypass the audio input circuits by sending a digital audio stream to the transceiver module. Q812 is a unity gain amplifier that provides buffering of the audio and data signals. U103B provides CODEC input switching which selects either the receiver I signal or transmitter audio/data signals depending on filtering, compression and limiting processes for narrow and wideband operation are carried out in the CODEC (U800) under the control of the DSP. The processed transmitter audio/data from the CODEC output at VOUTL is applied to the VCO as a modulation signal with a level of approximately 200mV P/P. All pre-emphasis, the TX/RX mode. TECHNICAL DESCRIPTION PAGE 41 4.3.4 Frequency Synthesis 4.3.4.1 General Refer to Figure 3.7. The SRM9000 frequency synthesiser consists of individual transmitter and receiver (local oscillator) voltage controlled oscillators, loop filter, varactor negative bias generator, reference oscillator and an integrated, dual phase locked loop device U701. 4.3.4.2 PLL The PLL device contains two prescalers, programmable dividers and phase comparators to provide a main and auxiliary PLL. The main PLL of U701 controls the frequency of the TX/RX VCOs via Control Voltage outputs at pins 2 and 3 and VCO Feedback to pin 6. The auxiliary PLL is used to control the receiver 90MHz second local oscillator via the Control Voltage output at pin 17 and VCO Feedback to pin 15. The PLL operation involves the division of the 14.4MHz reference oscillator frequency by divider U710 and the internal divider of U701 down to a lower frequency which corresponds to a sub-multiple of the radio channel spacing i.e. 6.25kHz for 12.5/25kHz channel spacing or 5kHz for 20kHz channel spacing. The VCO frequency is sampled and divided down to the same frequency after which it is phase compared to the reference. Any error produces an offset to the Control Voltage output which is used to correct the VCO frequency. A valid lock detect output is derived from pin 20 and is sampled by the FPGA during transmit. If an unlocked signal is detected the radio will switch back to receive mode. 4.3.4.3 VCO The transmitter and receiver VCOs use low noise JFET transistors (Q600 RX, Q602 TX) and inductors L602 (RX), L608 (TX) to generate the signals for the required band coverage. Electronic tuning is provided by varactor diodes D600 to D608 with their control voltages derived from the Loop Filter, PLL and Negative Bias Generator. VCO selection and timing is controlled by the DSP via the RX and TX power supplies and applied through switches Q601 (RX) and Q603 (TX). VCO buffer Q604/605 isolates the VCO from load variations and active power supply filter Q615 minimises supply related noise. A PLL feedback signal is sampled from the VCO buffer output via buffer Q607. 4.3.4.4 Negative Bias Generator and Loop Filter A positive and negative varactor bias supply similar to the front-end varactor arrangement has been used to achieve the required broadband tuning range of the VCOs. PLL device U701 is programmed to deliver a fixed nominal +2.5V output from phase detector/charge pump CPPF or CPP (selection depends on radio setup) regardless of the channel frequency selected. This voltage is filtered to remove synthesiser noise and reference products by loop filter C719/722/734 and R721/724/734. The resulting low noise voltage is applied to the cathode side of the VCO varactor tuning diodes as a positive bias voltage. The negative bias supply originates as a positive DC voltage (0.1V to 3.0V) at the DAC output of U701 (DOUT) with a level relative to the programmed state of the radio (e.g. channel frequency, TX/RX state). The voltage is converted to a high level negative supply by VCO Varicap Negative Supply Q700 to Q703. The -17V rail of this supply is generated PAGE 42 TECHNICAL DESCRIPTION XFIN-BLADE-SM by U300B/C with D304 to D307 providing the voltage multiplying effect needed to achieve
-17V. The output of the negative supply is applied directly to the VCO varactor anodes as the negative tuning voltage VCAP BIAS. 4.3.4.5 Phase Modulator The modulation path for audio, data and higher frequency CTCSS signals is via D609 and its associated components in the TX VCO. The reference input to the PLL (FXTAL) provides the low frequency modulation path in conjunction with phase modulator Q714 to Q716. U711A is a low pass filter that provides 6dB per octave attenuation to frequencies above approximately 180Hz. Modulation balance adjustment is carried out using a CODEC generated 100Hz square wave applied to TX MOD1. A DAC output from the Alignment Tool is applied to buffer U711B and ramp generator Q711 to Q713 via the TUNE BAL line to adjust the low frequency modulation level. 4.3.4.6 Reference Oscillator TCXO U700 determines the overall frequency stability and frequency setting of the radio. The frequency setting is achieved by adjusting its ADJ voltage with the Alignment Tool. In addition, the ADJ input is used in a frequency control loop with the receiver I and Q signals to provide receiver AFC. U700 operates at 14.4MHz and is specified at 2.0ppm frequency stability over the temperature range 25C to +75C. TECHNICAL DESCRIPTION PAGE 43 o T x T r e f f u B i o d u A n o i t p O t u p n I a t a D d n a 4 1 _ 0 0 0 9 i o d u A c M i i 1 n d u A e t a G 8 0 1 U e t a G 7 0 1 U x R
x T h c t i w S 1 1 6
1 0 6 D o T i r e x M x R x R 1 O L O C V r e f f u B 5 0 6
4 0 6 Q x T
x R O C V 2 0 6
0 0 6 Q I S A B P A C V r e t l i F p o o L
4 3 7 C
9 1 7 2 2 7 O C V i s a B g e N l y p p u S
1 0 7
0 0 7 Q 3 0 7
2 0 7
P S D A G P F m o r F P P C F P P C T U O D i r e s s e h t n y S 1 0 7 U 2 O L X U A P C X U A z H M 0 9 O L 2 0 4 Q 2 O L o T 1 0 4 U l r o t a u d o m e D Q I h t n y S r e f f u B 7 0 6 Q 1 D O M x T H T N Y S L A T X F r e d v D i i 0 1 7 U
) F H U
6 3
) F H V
2 7 e s a h P l r o t a u d o M 6 1 7
5 1 7
4 1 7 Q s s a P w o L r e t l i F A
1 1 7 U 1 d o M x T i c M p m A 2 1 8 Q m o r F A G P F N O 1 D O M I D O M x T h c t i w S A 3 0 1 U x T
x R h c t i w S F A B 3 0 1 U Q N I C F A
C A D C D A C E D O C 0 0 8 U C S O f e R 0 0 7 U C F A C F A p m A A 2 0 8 U r e f f u B 0 1 7 Q n e G p m a R 3 1 7
2 1 7
1 1 7 Q r e f f u B B
1 1 7 U l a B e n u T Figure 3.7 - VHF/UHF Synthesiser, Block Diagram PAGE 44 TECHNICAL DESCRIPTION XFIN-BLADE-SM l a i r e S t r o P a t a D x T 5 1 _ 0 0 0 9 a t a D x T r e f f u B 1 Q
C A D C D A C E D O C 0 0 8 U t r o P l l l l 4
1 C G A e n u T a i r e S e n o T A d n E d n E a t a D x R 1 A X U M e n u T E F N E X U M O A X U M f e R C D A e n u T L T C X U A 2 0 9 U 6 0 1 U t n o r F t n o r F r e f f u B r e f f u B l e v e L A G P F o r t n o C B 2 0 8 U A 1 0 9 U t e S r e w o P x T p a c i r a V 9 0 9
2 0 9 r e w o P x T s t l o V g e N r o t a s n a r T
1 0 9
0 0 9 Q r e x e p i t l u M 4.3.5 RF Sub-Assembly Internal Control Logic r e s s e h t n y S s t l o V p o o L y r o m e M t e s e R k c o C h s a F 0 0 1 Q 2 0 1 U 1 0 1 U 4 0 1 U P S D X E V O M p o o L l l i n e G p m a R C 5 0 1 U s t l o V 1 0 7 U Figure 3.8 - VHF/UHF Control Block Diagram TECHNICAL DESCRIPTION PAGE 45 4.3.5.1 DSP and FPGA The Blade RF sub-assemblies operate under the control of a DSP (U102) and FPGA
(U106) combination which together with a number of other dedicated devices perform all the operational and processing functions required by the radio. The FPGA is configured by the DSP under software control to provide the following functions:
Channel set-up for operating frequency Modulation processing and filtering De-modulation processing and filtering TX power output reference Receiver front-end tuning Serial communications with control board Modem functionality for data modulation Embedded signalling / CTCSS generation and decoding CO control Receiver muting control TX / RX switching PLL detect 4.3.5.2 DSP Clock Oscillator The DSP is clocked by a 15.360MHz oscillator that consists of crystal X100 and an internal DSP oscillator. Q100 forms a crystal switching circuit with C117 which when activated by a command from the FPGA steers the oscillator away from potential interfering frequencies. 4.3.6 RF Sub-Assembly Internal Memory Memory consists of the internal DSP memory and an external 4MB non-volatile Flash Memory U104. When power is off, program and data is retained in Flash Memory. At power-on, a boot program downloads the DSPs program from Flash Memory to its internal RAM for faster program execution and access to data. 4.3.6.1 Multiplexer U902 contains 2 separate 4-channel multiplexers providing a total of 8 independently controlled analogue switches. Under software control, the multiplexers produce tuning voltages from supplied data for the receiver front-end (TUNE 1 to 4), TX power setting (TX PWR SET), receiver AGC (AGC-1), alert tone (A TONE) and FPGA ramp generator (ADC REF). Buffer U802B is fed with a composite digital tuning signal (AUX CTL) from the DSP/FPGA containing the data for AGC, A TONE, ADC REF and TX PWR SET settings. The level is dependent on channel frequency and tuning and varies between 0.1 to 3.0V. This signal is applied to one group of 4 analogue switches in U902 via a common input connected to pin 13. The second group of 4 switches is fed with the receiver front-end tuning signal FE TUNE (to provide outputs for TUNE 1 to 4) via the second common input at pin 3 as described in the receiver front-end section. PAGE 46 TECHNICAL DESCRIPTION XFIN-BLADE-SM The 2 groups of analogue switches are independently controlled by FPGA binary signals MUX A0 and A1 and enable line MUXEN to output the required tuning voltages as a series of pulses. These pulses are converted to steady state voltages by integration capacitors C904 to 911 and C921 to 925. 4.3.7 RF Sub-Assembly Internal Power Supplies 4.3.7.1 Power On Function This set of functionality is designed for normal use in a vehicle environment; hence much of it is unused in this product. The unregulated 13.8V DC input is routed directly to high current devices and is also switched via FET Q350. The output from Q350 feeds three, low drop out series regulators and associated switched and auxiliary supplies that along with a negative voltage generator provide all the switched power requirements of the transceiver. Q315/316/317 and U313 form a power on/off latch circuit that is activated by a pulse from the control unit or microphone/handset via PWR ON or PWR OFF and controls the FET power switch Q350. A PWR OFF operation requires the button to be held down for more than 2 seconds. This is then sensed by the FPGA via the PWR SENSE line that turns the radio off by placing a positive pulse on the PWR OFF line thereby resetting U313B. 4.3.7.2 Power Lines The following is a list of the internal RF Sub-Assemblys power supplies and some of the devices and circuits they supply.
+8V Regulator U310 TX buffer Q612 VCOs and VCO buffers via active filter Q615 RX second local oscillator via Q403 Regulated +8.0V supply (8V0 and +8V) Regulated +8.0V switched supply (RX PSU) RX front-end IF Amplifier Various switching functions
+5V Regulator U311 Regulated +5.0V supply (5V0 and +5V) RX front-end varactor positive bias Synth. buffer Q607 VCO varactor negative supply Q700 to Q703 TCXO U700 RX audio amplifiers U803A/B RX mute switch Q810/813 Multiplexer U902 FE TUNE level translator and buffer U901A, Q900/901 Regulated +5.0V switched supply (TX PSU and TX PSU+) TX power control U3 TECHNICAL DESCRIPTION PAGE 47 TX buffer Q606 Microphone amplifier Q812 Various switching functions
+3.3V Regulator U312 I Q demodulator U401 Analogue supply for CODEC U800 Digital supply for CODEC U800 DSP U102 FPGA U106 Regulated +3.3V supply (3N3) Regulated +3.3V supply (3Q3) Regulated +3.3V supply (3C3) Regulated +3.3V supply (3P3) Unregulated 13.8V (13V8 UNSW) TX PA module U2 TX PA power control circuit Q3 Active filter Q14/17/18/19 Antenna changeover switch Q4/8/11 RX mute switch Q811 RX speaker amplifier U5 PLL U701 TCXO divider U702 Negative Power Supply U300B/C Provides -17.0V output (-17V0)
-12.0V Output (-12V0) multiplexer U902 Negative rail for VCO Varicap Negative Supply Q700, 701, 702 and Q703 Negative rail for FE TUNE level translator Q900, 901, 902, 903 and PAGE 48 TECHNICAL DESCRIPTION XFIN-BLADE-SM 4.4 ANTENNA REQUIREMENTS The antenna connections on the Blade are provided with 50 female N-type sockets. These should be tested, by use of a suitable test set, e.g. Anritsu/Wiltron S331A, for good VSWR (1.5:1 or better) at the Tx and Rx frequencies prior to use. Mating connectors should be galvanically compatible with nickel outer and gold centre pin to minimise passive intermodulation. A minimum of 85dB transmit-receive isolation should be provided by the antenna system and associated filters. 4.5 POWER SUPPLIES For type approval reasons, this product should not be operated with un-approved supplies. The switch mode supplies used in the wall mount and rack mount ancillaries are able to accept main AC in the range of 100 to 240 V, 50 or 60Hz. The output from the switched mode power supply to the Blade is +13.6VDC. Pin 3 on the D-type Power Connector provides protective earthing on the equipment. This should be connected using heavy duty Green/Yellow earthing wire, capacity greater than mains feed to equipment, as few bends as possible and an appropriate eyelet tag. Mains protective Earth should be checked for low impedance (<0.3). The equipment must be installed so that the IEC connector for the Wall or Rack Mount can be easily removed and/or the power socket should be readily accessible. All mains wiring must comply with local wiring regulations. 4.6 CONFIGURATION Configuration is provided via file download. This is performed via the XBMT Programmer using a PC connected to the Xfin Control card via its Ethernet port. Files are then stored in the product in non-volatile memory. Editing of parameters on a live base station is also possible with a connected PC. 4.7 ADJUSTMENT AND ALIGNMENT The two RF modules within this product are based upon the RF card of an SRM9000 mobile. The set up and alignment procedures for SRM9000 should be followed. In the event of a level-3 repair being required, refer to the SRM9000 Service Manual (TSD-
SRM9000-SM) [1]. There are no user adjustments to be made in normal use. TECHNICAL DESCRIPTION PAGE 49 5 MAINTENANCE Although no Routine Maintenance is required on the Blade, it is generally good practice to clean the inside of the equipment on each occasion that it is necessary to open it. Dust and or light debris may accumulate in the following areas:
Fans Heatsinks Vents Use a fine bristle brush to remove all dust/debris from these areas, taking care not to damage the equipment. 5.1 TORQUE SETTINGS The torque range to be used on tightening Torx screws and self-tapping screws on the Blade and SRM sub-assemblies is 8-10Lb/in (0.90-1.13 Nm). For all other small screws (Phillips/pozi head) use a maximum of 8 Lb/in (0.90Nm). 5.2 DISASSEMBLY When disassembling any part of the Blade take care to note where parts belong. 5.2.1 To Remove the Blade from a Rack When also fitted with associated PSUTRAY and shelf supports:
1. 2. Undo the screws holding the front panel of the PSUTRAY. 3. Disconnect and remove the PSUTRAY. 4. Undo the four screws securing the Blade Ears to the rack. 5. Switch off at mains. If the Blade is to be removed entirely, then disconnect all cables from the rear of the equipment. The Blade can now be lifted away from the shelf supports. 6. 5.2.2 To Open the Blade Qty 2 Fixing Screws M3 1. Remove the 2 x M3 Pan Head screws one each side of the lid. Lift and pull the front edge of the lid to remove the lid. 2. Disconnect the BNC connector. 5.2.3 To Remove a Tx or Rx Assembly 1. 2. Disconnect the DB15 power connector. 3. Disconnect the appropriate miniature 26-
way and the long ribbon cables (when refitting, take care to align centrally). 4. Undo the two quarter-turn Dzus fasteners. 5. Lift the rear of the sub-assembly then slide backwards until the Heatsink clears the front lip of the recess (take care not to damage any of the components on the control board). Transmitter Receiver DB15 Connectors BNC Connectors Miniature Ribbon Cables Long Ribbon Cable Dzus Fasteners PAGE 52 MAINTENANCE 5.2.4 To Remove the Control Board 1. Remove the top cover as detailed in Section 4.2.3. 2. Disconnect the three ribbon cables from the board. 3. Disconnect the Power Connector. 4. Remove the four socket fasteners from the 9-way and 37-way connectors on the rear panel. 5. Release the three plastic locking pegs. 6. Carefully lift out the board taking care not Press in to release to damage the Thermistor assembly underneath the board. Ensure that the Thermistor assembly is protected from damage when the Control Board is out of the Base Station chassis. XFIN-BLADE-SM Ribbon Cables Power Connector Socket Fasteners Plastic Locking Pegs Thermistor 5.2.5 To Remove the Front Assembly 1. Remove the four, Front Panel securing screws two per each side of the Front Panel 2. Carefully ease the front panel assembly away from the MMI assembly. Taking care to prevent damage to the control knob. 3. Carefully separate the cables (power, fans, loudspeaker, control card) taking care not to damage or unduly tension them. MAINTENANCE PAGE 53 5.2.6 To Remove the MMI Board 1. Remove the front assembly as described in Section 5.2.5. 2. Remove the six securing screws from the chassis brackets. 3. Detach all of the cables (power, fans, loudspeaker, control card). 4. 5. The MMI Board may now be removed. To Remove the Loudspeaker, remove the front assembly and MMI board as described above. Remove the four M3 nuts securing the Loudspeaker to the fan bulkhead. 5.2.7 To Remove a Fan 1. Remove the Front assembly as described in Section 5.2.5 and the MMI board as described in Section 5.2.6. 2. Remove the two fixing screws securing the appropriate Fan to the fan bulkhead. 3. Remove the Fan from the fan bulkhead. 5.3 RE-ASSEMBLY In general, the re-assembly procedure is the reverse of disassembly procedure. If there are any differences or there are any special areas of concern, they are described in this section. 5.3.1 To Fit an MMI Board 1. Fit the new MMI Board to the three support brackets using six M3 mm Pan-Head Screws. 2. Offer the front panel into position ensuring the top edge of the front panel clears the control knob. Ensure that the LCD Display and the control knob are correctly centred. 3. Reverse the procedure described in Section 5.2.6. 5.3.2 To Fit the Front Assembly 1. Reverse the procedure described in Section 5.2.6 taking note of the following:
Notes: 1. Care must be taken to prevent damage to the cables and connectors when re-
locating them through the access slot in the fan bulkhead and reconnecting them to the MMI board. 2. Care must be taken to prevent trapping the cables when fitting the front cover back together with the fan bulkhead. 5.3.3 To Fit the Control Board 1. Reverse the procedure described in Section 4.2.5. Note:
When positioning the Control Board, care must be taken to ensure that the Thermistor is located correctly in the hole in the base plate. PAGE 54 MAINTENANCE XFIN-BLADE-SM 6 PRODUCT VARIANTS AND ACCESSORIES 6.1 VARIANTS Blade - Full-Duplex Intelligent Base Station 25W Ext. PSU 25W Int. PSU 100W Version 66 - 88 MHz E0 Band XFINBLADE-E0 XFINBLADEI-E0 XFINPWRBLADE-E0 136 - 174 MHz AC Band XFINBLADE-AC XFINBLADEI-AC XFINPWRBLADE-AC 174 - 208 MHz K1 Band XFINBLADE-K1 XFINBLADEI-K1 XFINPWRBLADE-K1 208 - 245 MHz KM Band XFINBLADE-KM XFINBLADEI-KM XFINPWRBLADE-KM 310 - 350 MHz R0 Band XFINBLADE-R0 XFINBLADEI-R0 XFINPWRBLADE-R0 335 - 375 MHz R1 Band XFINBLADE-R1 XFINBLADEI-R1 XFINPWRBLADE-R1 400 - 450 MHz TK Band XFINBLADE-TK XFINBLADEI-TK XFINPWRBLADE-TK 400 - 480 MHz TU Band XFINBLADE-TU XFINBLADEI-TU XFINPWRBLADE-TU 440 - 500 MHz UW Band XFINBLADE-UW XFINBLADEI-UW XFINPWRBLADE-UW 470 - 530 MHz WR Band XFINBLADE-WR XFINBLADEI-WR XFINPWRBLADE-WR 6.2 ACCESSORIES The full range of accessories for the Blade is shown on the two Blade Accessories Posters. Accessories for MIC Connector TSF Serial Programming Lead with adaptor (DB-
9) Wall Mount Installation Items Wall Mount Unit with universal PSU (for single BS) Mains Cord for Wall Mount unit (EU/UK/US - select country) TSF-
PROGLEAD TSF-WMPS TSF-ACCORD-EU TSF-ACCORD-UK TSF-ACCORD-US TSF-DUPxx (where xx =
freq band) Duplexer option for wall-mount use PRODUCT VARIANTS AND ACCESSORIES PAGE 55 Rack Mount Installation Items Rack Mount Ears (1U) Rack mount PSU tray (1 base station, 2U) 25 WATT Rack mount PSU tray (1 base station, 2U) 100 WATT Duplexer for PSUTRAY (specify frequencies TSF only) Mains Cord for PSUTRAY (EU/UK/US - select country) TSF-EARS TSF-PSUTRAY TSF-2100PSUTRAY TSF-DUPxx (where xx =
freq band) TSF-ACCORD-EU TSF-ACCORD-UK TSF-ACCORD-US 6.2.1 TSF-ACCORD A 2m long cable used to connect the AC Mains Supply to the Blade, using the Wallmount, or a PSUtray in the Rackmount. Request the version relevant to the area of use:
TSF-ACCORD-UK United Kingdom TSF-ACCORD-EU Rest of Europe TSF-ACCORD-US United States 6.2.2 Duplexers, Combiners, Cavities, RSA Units Where a duplexer, combiner, cavity or Rx Antenna Amplifier must be re-ordered, an enquiry should be made to a qualified Project Engineer, who can advise on specific components. PAGE 56 PRODUCT VARIANTS AND ACCESSORIES XFIN-BLADE-SM 6.2.3 TSF-EARS A pair of 1U Rack Mounting Ears with screws for the Blade Base Station. These must be used in conjunction with a rack-support 6.2.4 TSF-PROG The TSF Serial Programming Lead contains an RS232 level converter. Together with the adaptor (DB-9) it can be used to connect the Blade, via the front panel RJ45 connector, to a PC. 6.2.5 Blade Shelves Where a re-ordering enquiry is made with regard to Blade shelving, a qualified Project Engineer should be consulted to give advice. Order code for a PSU tray for Blade systems involving 1-3 basestations:
PSU Trays for Blade Systems with 1-3 Basestations Rack mount PSU tray (19 1U for 1x 25W Blade) Rack mount PSU tray (19 1U for 2x 25W Blade) Rack mount PSU tray (19 1U for 3x 25W Blade) 6.2.6 TSF-1BS PSUTRAY A 2U-rack tray with front panel is designed for use with a Blade in an enclosed 19 rack where duplexers must be shelved alongside power supplies. The Blade plus the TSF-PSUTRAY occupies a total of 3U of rack space. TSF-1PSU1U TSF-2PSU1U TSF-3PSU1U The tray is supplied complete with a universal power supply (100-240VAC, 50/60Hz, IEC input) suitable for a single Blade. TSF-DUPLEXER may be fitted as an option. An optional PSU may be used with the Power Blade configuration. 6.2.6.1 TSF-1BS PSUTRAY Specifications Dimensions:
480mm(W) x 400mm(D) x 90mm(H). Weight:
3.95kg. Mains Connector:
IEC Power requirement:
150W Fuse Rating:
Blade Cable:
110V: T250V 4A HB 250V: T250V 2A HB. Approx. 300mm PRODUCT VARIANTS AND ACCESSORIES PAGE 57 PAGE 58 PRODUCT VARIANTS AND ACCESSORIES 7 SPARES 7.1 SERVICE CONCEPT The Blade series has been designed to provide a low cost trunked and non-trunked, analogue, base station, using common core electronics, software and interfacing. It is a requirement that once the customer has purchased equipment, Team Simoco can follow this by providing ongoing, high level of customer support together with a competitive and professional servicing activity. There are three levels of service available:
Level Activity 1 2 3 This is intended to achieve rapid turn around by Complete replacement of transceiver or ancillaries Replacement of sub-
assemblies Reprogramming Checking/replacement of fuses Faulty units are to be returned to a level-2 service facility with an attached fault report. This level of service should not exceed 20 minutes. Level 2 service includes level 1 with the addition of fault rectification by:
Replacement of PCB, mechanical component, or cable assembly Cosmetic repair Repair by PCB or mechanical component replacement, Cosmetic repair. Repair of PCB to component level in CRU. Recommended Spares SRM sub-assembly
(by band) Control board MMI board Fan Spare cable assys. Replacement fuses Recommended Test Equipment and tools Multimeter P.C. with Programmer Engineering handset Small flat-blade screwdriver Small cross-head screwdriver Large pozi-drive screwdriver As above + service aids and test equipment As above + service aids and test equipment Listed in Level 2 Spares Schedule Spare parts available to order from Central Spares Listed in Level 2 Spares Schedule Radio PCB components only available to CRU. 7.2 LEVEL-2 SPARES SCHEDULE 7.2.1 XFIN BLADE (INTERNAL PSU VERSION) Figure 6.1 Exploded Diagram of the Xfin Blade PAGE 60 SPARES XFIN-BLADE-SM 7.2.2 Assembly Item List Part Number D116-0027-M-01 D116-0024-M-05 D116-0006-M-03 00601-0001630-0 00606-000540-0 D116-0012-M-04 D116-0025-M-01 D116-0028-M-02 D111-0042-M-02 0003-0001-M-07 D111-0006-M-01 0003-0029-W-03 02800-0000175-0 D111-0041-G-01 02700-0000140-0 01109-0000120-0 00304-0002190-0 00304-0002110-0 D116-0013-W-02 D116-0022-W-01 D116-0015-W-02 0003-0018-W-01 D116-0014-G-03 D116-0001-G-03 59800-0000034-0 00806-0000130-0 00804-0000002-0 00804-0000180-0 52701-0000040-0 00602-0000360-0 00603-0000210-0 3513 903 67181 00601-0001660-0 00601-0000420-0 00601-0000585-0 00601-0000700-0 00601-0000760-0 Part Description Quantity CASE BULKHEAD X/FIN X-FIN FRONT PANEL (SOLID FRONT) LID ASSY X/FIN M3X8 SCREW PAN HD POZI STL/S M3 PLAIN WASHER STAINLESS/STL. 230V REAR PANEL TSC 2000 WINDOW PROTECTION INSULATION PAD TSF/XFIN TSF2025I INT PSU BRKT (LAMBDA) RACK MNTG EARS TSF2000 TSF WALL MOUNTING EAR TSF LOUDSPEAKER ASSY FAN TYPE 412J/2H-T224-730Q TSF2000 FUSE BOARD KNOB CONTROL SILVER 25MM LIGHT GUIDE 14mm ROUNDED CONNECTOR IEC FLANGED CONNECTOR CLIP RETAINING RF CABLE RX TSC2000 X/FIN DC POWER LOOM INTERNAL TSC2000 PA TO CTRL PCB CBL FRM RIBBON CABLE RX/TX SRM MMI ASSY - X/FIN CONTROL BOARD ASSY - X/FIN FUSEHOLDER PCB 20X5MM FUSE COVER CLEAR FUSE 10A Q/BLOW GLASS 20MM 2A 20MM QB GLASS PSU 12V 150W (TSF2025i) RECEPTACLE DZUS 334-200-190 PCB SUPPORT - BLIND HOLE 4.8mm LABEL T/A & UNIT SRM9000 M3X8 PAN HD POZI-BLACK M3 X8 POZI P/HD BZP M3 X 30 POZI P/HEAD M4 X10 CSNK POZI M5 X20 POZI P/HD BZP 1 1 1 2 2 1 1 1 1 2 2 1 3 1 1 5 1 1 1 1 1 2 1 1 1 1 2 1 1 4 4 3 4 6 6 4 1 SPARES PAGE 61 M3 NUT BZP 00602-0000120-0 NUT M5 HEX STEEL ZINC PLATE 00601-0001560-0 M4 PLAIN WASHER BZP 00606-0000220-0 S/P WASHER STEEL ZINC/P M4 00601-0001570-0 M3 X10 POZI P/HD BZP 00601-0000440-0 M3 PLAIN WASHER BZP 00606-0000180-0 M4 X 6 P/HD POZI 00601-0000650-0 IEC CONN TO LAMBDA PSU CBL D111-0046-W-03 M3 S/P WASHER BZP 00606-0000190-0 TSF2000 RX TX CABLEFORM 0003-0016-W-01 00601-0001570-0 S/P WASHER STEEL ZINC/P M4 00601-0001580-0 WASHER PLAIN M5 ZINC PLATE D116-0031-W-01 01202-0000150-0 01202-0000160-0 01202-0000170-0 PA-ACCORD-UK D116-0030-W-01 02313-0000010-0 01108-0000010-0 XFIN MMI TO FUSE PCB CBL FORM XFIN PACKING BOX XFIN PACKING BAG XFIN ETHER FOAM PACKING CORD AC POWER UK XFIN CTRL PCB TO PSU CBL FRM ENCODER 15mm KNURLED SHAFT DISPLAY LCD WHITE/BLUE 8 3 2 2 2 2 2 1 4 1 2 2 1 1 1 1 1 1 1 1 7.3 WARRANTY Unless superseded by specific contractual/supply agreements, the normal statutory 24 -
month warranty will apply to all base stations and ancillaries. 7.3.1 Service Within and Out Of Warranty Please contact our Central Repair facility regarding support of either type. customerservices@teamsimoco.com Tel: +44 (0)1332 375620 In some countries a local Simoco agent may be responsible for providing this service. 7.3.2 Ancillary Items Please contact our Central Repair facility regarding service, for replacement of these parts. customerservices@teamsimoco.com Tel: +44 (0)1332 375620 7.3.3 Unpacking Equipment Any damaged or missing parts must be notified to Team Simoco or their agent in writing within 10 days of receipt. PAGE 62 SPARES XFIN-BLADE-SM 7.4 SOFTWARE POLICY Software provided by Team Simoco shall remain the Company's property, or that of its licensors and the customer recognises the confidential nature of the rights owned by the Company. The customer is granted a personal, non-exclusive, non-transferable limited right of use of such software in machine-readable form in direct connection with the equipment for which it was supplied only. In certain circumstances the customer may be required to enter into a separate licence agreement and pay a licence fee, which will be negotiated at the time of the contract. The customer undertakes not to disclose any part of the software to third parties without the Company's written consent, nor to copy or modify any software. The Company may, at its discretion, carry out minor modifications to software. Major modifications may be undertaken under a separate agreement, and will be charged separately. All software is covered by a warranty of 3 months from delivery, and within this warranty period the Company will correct errors or defects, or at its option, arrange free-of-charge replacement against return of defective material. Other than in the clause above, the Company makes no representations or warranties, expressed or implied such, by way of example, but not of limitation regarding merchantable quality or fitness for any particular purpose, or that the software is error free, the Company does not accept liability with respect to any claims for loss of profits or of contracts, or of any other loss of any kind whatsoever on account of use of software and copies thereof. SPARES PAGE 63 PAGE 64 SPARES XFIN-BLADE-SM 8 LCD MENU OPERATION 8.1 DEFAULT DISPLAY The LCD Display is a back-lit alphanumeric 2-line visual output which shows status, menu options and call activity. Immediately following power-up, the LCD indicates its progress through the boot-up procedure. A typical sequence is:
BLADE Xfin Loading Init Available Additional status changes include adoption of Control status, * marker indicating assumption of site master status and the # marker which indicates assumption of system master status (in a multi-site configuration). 8.2 MENU STRUCTURE The Xfin Blade menu is manipulated via the control knob. Rotating the knob while in default state will alter the loudspeaker volume setting. Pressing the knob once from the default display opens the main menu, with the current option displayed on the screen. Rotating the control knob cycles through the available options, which are:
1. Alarms 2. Set IP Address 3. Set Position in Site 4. Set Site ID 5. Set System ID 6. Enable Screen Saver 7. Test Menu 8. Exit Where a menu selection gives the option of altering parameters (e.g. entering a series of digits), this may be carried out by:
moving the underline cursor to the variable in question by rotating the knob pressing the button to select the digit pressing the knob to set the digit rotating the knob to alter the value LCD MENU OPERATION PAGE 65 moving the cursor to the tick mark at the side of the screen when all variables are altered and pressing to confirm (an x on the other side of the screen can be selected to cancel the alteration). Where a variable can only be increased or decreased, no cursor, tick or x symbols are present. 8.2.1 Alarms Menu If the Alarm LED is lit (red LED on the far right hand side of the Blade front-panel), the Alarms menu will display the details of each alarm for example Tx Fan Too Slow, No DSP, No Rx Module etc. Each alarm message is displayed by rotating the control knob. 8.2.2 Set IP Address Accessing this menu displays the current IP address as four 3-digit sections. This address may be altered from this section. 8.2.3 Set Position in Site Accessing this menu displays the current position in site as a 2-digit decimal number. This number may be altered from this section. 8.2.4 Set Site ID Accessing this menu displays the current site ID as a 2-digit decimal number. This number may be altered from this section. 8.2.5 Set System ID Accessing this menu displays the current system ID as a 2-digit decimal number. This number may be altered from this section. 8.2.6 Enable Screen Saver This section allows the user to enable the screen saver. The screen saver activates after the LCD menu has not been accessed for a set period. 8.2.7 Test Menu This menu is for engineering use only and should only be access by qualified personnel. It can be used to assist with the configuration of audio levels and the testing of communication paths. 8.2.8 Exit Select this option to exit the menu and revert to the display of current status.. PAGE 66 LCD MENU OPERATION XFIN-BLADE-SM 9 PROGRAMMER GUIDE 9.1 GETTING STARTED Ensure that the PC is connected to the Xfin Blade Management Terminal via a CAT 5 Ethernet cable or a RS232 Serial cable. This provides the communications link between the Xfin Blade Management Terminal and the Xfin Blade. 9.1.1 Main Screen The main menu by default displays clickable buttons of several configurable areas. Some areas will be hidden depending on whether the Xfin Blade Management Terminal is in Single Site or Multi Site. The areas are:
Switch Site Configuration Xfin Blades Channels Channel Lists PABX/PSTN Operating Parameters Fleets Subscribers Access Levels Diversions White List Timers Time Schedule External Alarms Queue Depths VOX 9.2 DATABASE The Xfin Blade Management Terminal requires a database to be created to store raw data. This data can then used to configure an Xfin Blade. When configuring the Xfin Blade data is taken from the database and sent to the Xfin Blade. Data that the Xfin Blade Management Terminal receives from the Xfin Blade is also stored within the database. 9.2.1 Creating a New Database Located across the top of the Main Menu form there is a menu bar. To create the new database click on Database tab, then select New from the drop down. A window will PROGRAMMER GUIDE PAGE 67 appear allowing a new database to be created in a location of choice. Use the save in drop down box to navigate to the area where the database is to be stored. Give the database a name using the File Name box and then click on save. Clicking on cancel instead would bring back the main menu form. 9.2.2 Opening a Database Multiple databases can be created however the Xfin Blade Management Terminal will only use one database at a time. Xfin Blade Management Terminal offers the ability to switch between the databases by selecting Database from the menu bar at the top of the form, and clicking Open in the drop down. Using the Look in drop down box navigate the database to be opened. Select the database by clicking on the database to highlight it. Now select the button Open which will load in that database. Clicking cancel instead will bring back the main menu. 9.3 COMMUNICATIONS SETTINGS To connect to the Xfin Blade the communications settings will first need to be altered. This is located in the menu bar running across the top of the form, under Communications. On this form there are options for Ethernet and Serial. 9.3.1 Connection Type There are two options Ethernet via CAT 5 cable, or Serial via RS232. Select the type of connection by left clicking on one of the radio buttons in the Ethernet Communications box. 9.3.2 Serial Communications The Serial Communications needs to be configured when Serial is selected in the Connection Type box. There are five setting in the Serial Communications:
Com Port This is the serial communication port being used to connect to the Xfin Blade. To select a Com Port click on the arrow in the box to the right of Com Port and select a Com Port from the drop down list. Baud Rate This is the speed at which the data is passed through the serial connection. To Select a Baud Rate click on the arrow in the box to the right of Baud Rate and select a Baud Rate from the drop down list. Parity This is a type of error detection using bit checking. To select a Parity click on the arrow in the box to the right of Parity and select a Parity from the drop down list. Stop Bits This is the bit that signals the end of a transmission on the serial line. To select a Stop Bit click on the arrow in the box to the right of Stop Bit and select a Stop Bit from the drop down list. Flow Control This is used to regulate the rate at which information is transferred from one device to another. To select a Flow Rate click on the arrow in the box to the right of Flow Rate and select a Flow Rate from the drop down list. Now that the Serial Communications setting have been configured click on Save & Exit to menu to the main menu. Alternatively click on refresh to set the setting back to what they were when the Communications Settings form was first opened. PAGE 68 PROGRAMMER GUIDE XFIN-BLADE-SM 9.3.3 Ethernet Communications The Ethernet Communications options needs to be configured when Ethernet is selected in the Connection Type box. There are four settings in the Ethernet Communications:
Connect to Site Master/Connect to System Master This option allows you to choose whether to connect to the Site master or if you want to connect to the System master. Site ID This is the ID of the site that you want to connect to. The Site ID is set from a Xfin Blades front panel. System ID This is the ID of the system that you want to connect to. The System ID is set from a Xfin Blades front panel. UDP Listening Port This is the port that the Xfin Blade Management Terminal listens for a connection on. To set this port, click on the box to the right of UDP Listening Port and enter a port number. The default value for this port is 4950. Now that the Ethernet Communications setting have been configured click on Save & Exit to menu to the main menu. Alternatively click on refresh to set the setting back to what they were when the Communications Settings form was first opened. 9.3.4 Open Comms To be able to send messages to the Xfin Blade, communications firstly has to be established between the Xfin Blade Management Terminal and Xfin Blade. Ensure that the Communication settings are correct. From the main menu window select Communications from the menu bar that is located across the top of the form. Left click on Open Comms from the drop down list. The Xfin Blade Management Terminal will now attempt to connect to the Xfin Blade. If the Xfin Blade Management Terminal was successful then Established will be displayed in the button left hand corner of the main menu. If the Xfin Blade Management Terminal does not go in to Established then make sure that the Communication Settings are correct and then retry connecting. 9.4 STATE There are two states that the Xfin Blade Management Terminal can be in. The state will determine how the Xfin Blade Management Terminal configures the Xfin Blade. Offline When in offline mode any changes that are made to the data contained in the Xfin Blade Management Terminal will not be sent to the Xfin Blade. To place the Xfin Blade Management Terminal in to offline mode click on the small box in the status bar of the main menu until it says offline. Live When in live mode any changes that are made to the data contained in the Xfin Blade Management Terminal will also be sent to the Xfin Blade. To place the Xfin Blade Management Terminal in to Live mode make sure that the Live mode click on the small box in the status bar of the main menu until it says live. PROGRAMMER GUIDE PAGE 69 9.5 AREA CONFIGURATION Choose an area from the main menu to configure by left clicking on one of the large buttons, which are located in the middle on the main menu form. The area form will now be shown with the configurable fields. The majority of the forms all follow this same format and allow you to edit, add, delete, get, get configuration, accept/send, send configuration and reset configuration. The mode effects differ if the Xfin Blade Management Terminal is in Live or Offline state. When the Xfin Blade Management Terminal is in Live mode the changes happen to the Xfin Blade Management Terminal and the Xfin Blade. When the Xfin Blade Management Terminal is in Offline mode the changes are only stored in the Xfin Blade Management Terminal. 9.5.1 Edit To alter any of the fields shown on the form the form needs to be in edit mode. Once the form is set to edit mode the boxes that were blanked out are now available for altering. Edit mode will allow you to only alter an existing record. To set the form in to edit mode left click on the Edit button located on the right hand side of the screen. To get out of edit mode, click on accept or cancel. Accept will store the changes, if any that have been made. Cancel will ignore any changes that have been made and return back to its previous state. 9.5.2 Add Add mode allows a new record to be added to the Xfin Blade Management Terminal. Left click on the add button which is locate to the right of the form and an empty form will be shown. Enter the required data in to all of the boxes. To accept the record click on the accept button. To cancel the record, click on the cancel button. 9.5.3 Delete Delete will remove the current selected record that is being shown from the Xfin Blade Management Terminal and the Xfin Blade depending on the state of the programmer. Left click on the delete button located on the right hand side of the form to delete the record. 9.5.4 Accept/Send Accept/Send will accept the record that is currently being show on the form. Accept/Send will also send the record to the Xfin Blade as long as comms are established. Left click on the Accept/Send button located on the right hand side of the form to Accept/Send a record. 9.5.5 Get Record As long as the Xfin Blade Management Terminal has established a connection to an Xfin Blade Get Record will retrieve an update on the current selected record. To do a Get Record left click on the Get Record button located on the right hand side of the form. 9.5.6 Send Configuration As long as the Xfin Blade Management Terminal has established a connection to an Xfin Blade Send Configuration will send every record for the current area to an Xfin Blade. To PAGE 70 PROGRAMMER GUIDE XFIN-BLADE-SM Send Configuration left click on the Send Configuration button located on the right hand side of the form. 9.5.7 Get Configuration As long as the Xfin Blade Management Terminal has established a connection to an Xfin Blade Get Configuration will retrieve every record that is store in the Xfin Blade for that area. To Get Configuration left click on the Get Configuration button located on the right hand side of the form. 9.5.8 Reset Configuration Reset Configuration offers the user the choice to delete everything that is in the Xfin Blade Management Terminals current database for that area or to delete everything in the database for that area for the Xfin Blade and the Xfin Blade Management Terminal. 9.5.9 Navigation Buttons One area can store multiple records and the form can only show one record at a time. The navigation buttons located below the forms data boxes. The double arrow that points to the left displays the first record. The double arrow that points to the right displays the last record. The single arrow that points to the left displays the previous record. The single arrow that points to the right displays the next record. PROGRAMMER GUIDE PAGE 71 PAGE 72 PROGRAMMER GUIDE Team Simoco Ltd, Field House, Uttoxeter Old Road, Derby DE1 1NH Tel: +44 (0) 1332 375500 FAX: +44 (0) 1332375501 www.teamsimoco.com A. GLOSSARY AND ABBREVIATIONS TX RX DSP USB MII JTAG EMI GPIO PCB PHY SDRAM UART MMI RTC PA CoDec TSC RTS CTS PSTN TBR LVD NIC LCD SPORT ROM NC E&M DAA Transmit Receive Digital Signal Processor Universal Serial Bus Media-Independent Interface Joint Test Action Group Electro-Magnetic Interference General Purpose Input/Output Printed Circuit Board PHYsical layer interface Synchronous Dynamic Random Access Memory Universal Asynchronous Receiver-Transmitter Man-Machine Interface Real Time Clock Power Amplifier Coder/Decoder Trunked Site Controller Request To Send (RS232 flow control signal) Clear To Send (RS232 flow control signal) Public Switched Telephone Network Technical Basis for Regulation Low Voltage Directorate Network Interface Controller Liquid Crystal Display Serial PORT of the digital signal processor Read Only Memory Not Connected Ear and Mouth Data Access Arrangement XFIN-BLADE-SM B. CONTROL CARD BLOCK DIAGRAM CONTROL CARD BLOCK DIAGRAM PAGE 75
frequency | equipment class | purpose | ||
---|---|---|---|---|
1 | 2009-05-19 | 421 ~ 480 | TNB - Licensed Non-Broadcast Station Transmitter | Class II permissive change or modification of presently authorized equipment |
2 | 2008-02-14 | 421 ~ 480 | TNB - Licensed Non-Broadcast Station Transmitter | Original Equipment |
app s | Applicant Information | |||||
---|---|---|---|---|---|---|
1 2 | Effective |
2009-05-19
|
||||
1 2 |
2008-02-14
|
|||||
1 2 | Applicant's complete, legal business name |
Simoco EMEA Ltd
|
||||
1 2 | FCC Registration Number (FRN) |
0023210677
|
||||
1 2 | Physical Address |
Field House
|
||||
1 2 |
Derby, N/A
|
|||||
1 2 |
United Kingdom
|
|||||
app s | TCB Information | |||||
1 2 | TCB Application Email Address |
T******@TIMCOENGR.COM
|
||||
1 2 | TCB Scope |
B2: General Mobile Radio And Broadcast Services equipment in the following 47 CFR Parts 22 (non-cellular) 73, 74, 90, 95, 97, & 101 (all below 3 GHz)
|
||||
app s | FCC ID | |||||
1 2 | Grantee Code |
U89
|
||||
1 2 | Equipment Product Code |
XFINBLATU
|
||||
app s | Person at the applicant's address to receive grant or for contact | |||||
1 2 | Name |
R****** S********
|
||||
1 2 | Title |
Development Manager
|
||||
1 2 | Telephone Number |
+44-1********
|
||||
1 2 | Fax Number |
+44-1********
|
||||
1 2 |
r******@simocogroup.com
|
|||||
app s | Technical Contact | |||||
n/a | ||||||
app s | Non Technical Contact | |||||
n/a | ||||||
app s | Confidentiality (long or short term) | |||||
1 2 | Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | Yes | ||||
1 2 | Long-Term Confidentiality Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | No | ||||
if no date is supplied, the release date will be set to 45 calendar days past the date of grant. | ||||||
app s | Cognitive Radio & Software Defined Radio, Class, etc | |||||
1 2 | Is this application for software defined/cognitive radio authorization? | No | ||||
1 2 | Equipment Class | TNB - Licensed Non-Broadcast Station Transmitter | ||||
1 2 | Description of product as it is marketed: (NOTE: This text will appear below the equipment class on the grant) | UHF TRUNKING LANDMOBILE BASE STATION | ||||
1 2 | Related OET KnowledgeDataBase Inquiry: Is there a KDB inquiry associated with this application? | No | ||||
1 2 | Modular Equipment Type | Does not apply | ||||
1 2 | Purpose / Application is for | Class II permissive change or modification of presently authorized equipment | ||||
1 2 | Original Equipment | |||||
1 2 | Composite Equipment: Is the equipment in this application a composite device subject to an additional equipment authorization? | No | ||||
1 2 | Related Equipment: Is the equipment in this application part of a system that operates with, or is marketed with, another device that requires an equipment authorization? | No | ||||
1 2 | Grant Comments | Power listed is conducted. The antenna(s) used for this transmitter must be fixed-mounted on a permanent structure with a separation distance of at least 2 meters from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. Users and installers must be provided with antenna installation and transmitter operating conditions for satisfying RF exposure compliance Power is adjustable in steps from 10 Watts to the value shown in this filing. | ||||
1 2 | Power listed is conducted. The antenna(s) used for this transmitter must be fixed-mounted on a permanent structure with a separation distance of at least 2 meters from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. Users and installers must be provided with antenna installation and transmitter operating conditions for satisfying RF exposure compliance Power is adjustable in steps from 10 Watts to the value shown in this filing. | |||||
1 2 | Is there an equipment authorization waiver associated with this application? | No | ||||
1 2 | If there is an equipment authorization waiver associated with this application, has the associated waiver been approved and all information uploaded? | No | ||||
app s | Test Firm Name and Contact Information | |||||
1 2 | Firm Name |
EMC Technologies NZ Ltd.
|
||||
1 2 | Name |
A**** C********
|
||||
1 2 | Telephone Number |
64-9-********
|
||||
1 2 | Fax Number |
64-9-********
|
||||
1 2 |
a******@ihug.co.nz
|
|||||
Equipment Specifications | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
1 | 1 | 22,9 | 68 | 421 | 480 | 100 | 1.5 ppm | 11K0F3E | |||||||||||||||||||||||||||||||||
1 | 2 | 22,9 | 68 | 421 | 480 | 100 | 2.5 ppm | 16K0F3E | |||||||||||||||||||||||||||||||||
1 | 3 | 22,9 | 68 | 421 | 480 | 100 | 1.5 ppm | 8K50F3D | |||||||||||||||||||||||||||||||||
1 | 4 | 22,9 | 68 | 421 | 480 | 100 | 2.5 ppm | 12K0F3D | |||||||||||||||||||||||||||||||||
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
2 | 1 | 22,9 | 68 | 421 | 480 | 100 | 2.5 ppm | 11K0F3E | |||||||||||||||||||||||||||||||||
2 | 2 | 22,9 | 68 | 421 | 480 | 100 | 2.5 ppm | 16K0F3E | |||||||||||||||||||||||||||||||||
2 | 3 | 22,9 | 68 | 421 | 480 | 100 | 2.5 ppm | 8K50F3D | |||||||||||||||||||||||||||||||||
2 | 4 | 22,9 | 68 | 421 | 480 | 100 | 2.5 ppm | 12K0F3D |
some individual PII (Personally Identifiable Information) available on the public forms may be redacted, original source may include additional details
This product uses the FCC Data API but is not endorsed or certified by the FCC