all | frequencies |
|
exhibits | applications |
---|---|---|---|---|
manual |
app s | submitted / available | |||||||
---|---|---|---|---|---|---|---|---|
1 |
|
User manual | Users Manual | 1.71 MiB | May 04 2019 | |||
1 | BOM | Parts List/Tune Up Info | April 05 2019 | confidential | ||||
1 | Block Diagram | Block Diagram | April 05 2019 | confidential | ||||
1 | Cover Letter(s) | May 04 2019 | ||||||
1 | Cover Letter(s) | May 04 2019 | ||||||
1 | Cover Letter(s) | May 04 2019 | ||||||
1 | External Photos | May 04 2019 | ||||||
1 | Internal Photos | May 04 2019 | ||||||
1 | ID Label/Location Info | May 04 2019 | ||||||
1 | ID Label/Location Info | May 04 2019 | ||||||
1 | RF Exposure Info | May 04 2019 | ||||||
1 | Cover Letter(s) | May 04 2019 | ||||||
1 | Operation Description | Operational Description | April 05 2019 | confidential | ||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Test Report | May 04 2019 | ||||||
1 | Schematics | Schematics | April 05 2019 | confidential | ||||
1 | TUNE UP | Parts List/Tune Up Info | April 05 2019 | confidential | ||||
1 | Test Setup Photos | May 04 2019 |
1 | User manual | Users Manual | 1.71 MiB | May 04 2019 |
EM06 Hardware Design LTE-A Module Series Rev. EM06_Hardware_Design_V1.0 Date: 2018-07-17 Status: Released www.quectel.com LTE-A Module Series EM06 Hardware Design Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd. 7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@quectel.com Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm Or email to: support@quectel.com GENERAL NOTES QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved. EM06_Hardware_Design 1 / 63 LTE-A Module Series EM06 Hardware Design About the Document History Revision Date Author Description 1.0 2018-07-17 King MA/
Wison HE Initial EM06_Hardware_Design 2 / 63 LTE-A Module Series EM06 Hardware Design Contents About the Document ................................................................................................................................... 2 Contents ....................................................................................................................................................... 3 Table Index ................................................................................................................................................... 5 Figure Index ................................................................................................................................................. 6 1 Introduction .......................................................................................................................................... 7 1.1. Safety Information ....................................................................................................................... 8 2 Product Concept .................................................................................................................................. 9 2.1. General Description .................................................................................................................... 9 2.2. Key Features ............................................................................................................................. 10 2.3. Functional Diagram ................................................................................................................... 13 2.4. Evaluation Board ....................................................................................................................... 13 3 Application Interfaces ....................................................................................................................... 14 3.1. Pin Assignment ......................................................................................................................... 15 3.2. Pin Description .......................................................................................................................... 16 3.3. Power Supply ............................................................................................................................ 20 3.3.1. Decrease Voltage Drop .................................................................................................. 20 3.3.2. Reference Design for Power Supply .............................................................................. 21 3.4. Turn on and off Scenarios ......................................................................................................... 22 3.4.1. Turn on the Module ........................................................................................................ 22 3.4.1.1. Turn on the Module Through GPIO Controlled FULL_CARD_POWER_OFF# . 23 3.4.1.2. Turn on the Module Automatically ....................................................................... 23 3.4.2. Turn off the Module ........................................................................................................ 24 3.4.2.1. Turn off the Module Through FULL_CARD_POWER_OFF# ............................. 24 3.4.2.2. Turn off the Module via AT Command ................................................................. 25 3.5. Reset the Module ...................................................................................................................... 25 3.6.
(U)SIM Interfaces ...................................................................................................................... 26 3.7. USB Interface ............................................................................................................................ 30 3.8. PCM and I2C Interfaces ............................................................................................................ 32 3.9. Control and Indicator Signals .................................................................................................... 34 3.9.1. W_DISABLE1# Signal.................................................................................................... 35 3.9.2. WWAN_LED# Signal ..................................................................................................... 35 3.9.3. WAKE_ON_WAN# Signal .............................................................................................. 36 3.9.4. DPR Signal ..................................................................................................................... 37 3.10. Tunable Antenna Control Interface* .......................................................................................... 37 3.11. Configuration Pins ..................................................................................................................... 38 4 GNSS Receiver ................................................................................................................................... 39 4.1. General Description .................................................................................................................. 39 5 Antenna Interfaces ............................................................................................................................. 40 5.1. Main/Rx-diversity Antenna Interfaces ....................................................................................... 40 EM06_Hardware_Design 3 / 63 LTE-A Module Series EM06 Hardware Design 5.1.1. Operating Frequency ..................................................................................................... 41 5.2. GNSS Antenna Interface ........................................................................................................... 43 5.3. Antenna Installation .................................................................................................................. 44 5.3.1. Antenna Requirements .................................................................................................. 44 5.3.2. Recommended RF Connector for Antenna Installation ................................................. 44 6 Electrical, Reliability and Radio Characteristics ............................................................................ 48 6.1. Absolute Maximum Ratings ...................................................................................................... 48 6.2. Power Supply Requirements .................................................................................................... 48 6.3. I/O Requirements ...................................................................................................................... 49 6.4. Operation and Storage Temperatures ...................................................................................... 49 6.5. Current Consumption ................................................................................................................ 50 6.6. RF Output Power ...................................................................................................................... 54 6.7. RF Receiving Sensitivity ........................................................................................................... 54 6.8. ESD Characteristics .................................................................................................................. 56 6.9. Thermal Dissipation .................................................................................................................. 56 7 Mechanical Dimensions and Packaging ......................................................................................... 58 7.1. Mechanical Dimensions of the Module ..................................................................................... 58 7.2. Standard Dimensions of M.2 PCI Express ............................................................................... 59 7.3. Design Effect Drawings of the Module ...................................................................................... 60 7.4. M.2 Connector ........................................................................................................................... 61 7.5. Packaging ................................................................................................................................. 61 8 Appendix References ........................................................................................................................ 62 EM06_Hardware_Design 4 / 63 LTE-A Module Series EM06 Hardware Design Table Index TABLE 1: FREQUENCY BANDS AND GNSS TYPE OF EM06 SERIES MODULE ........................................... 9 TABLE 2: KEY FEATURES OF EM06 ............................................................................................................... 10 TABLE 3: DEFINITION OF I/O PARAMETERS ................................................................................................. 16 TABLE 4: PIN DESCRIPTION ........................................................................................................................... 16 TABLE 5: DEFINITION OF VCC AND GND PINS............................................................................................. 20 TABLE 6: DEFINITION OF FULL_CARD_POWER_OFF# PIN ........................................................................ 22 TABLE 7: RESET# PIN DEFINITION ................................................................................................................ 25 TABLE 8: PIN DEFINITION OF (U)SIM INTERFACES ..................................................................................... 27 TABLE 9: PIN DEFINITION OF USB INTERFACE ........................................................................................... 30 TABLE 10: PIN DEFINITION OF PCM AND I2C INTERFACES ....................................................................... 33 TABLE 11: LIST OF CONTROL AND INDICATOR SIGNALS ........................................................................... 34 TABLE 12: RF FUNCTION STATUS ................................................................................................................. 35 TABLE 13: NETWORK STATUS INDICATIONS OF WWAN_LED# SIGNAL ................................................... 36 TABLE 14: STATE OF THE WAKE_ON_WAN# SIGNAL .................................................................................. 36 TABLE 15: FUNCTION OF THE DPR SIGNAL ................................................................................................. 37 TABLE 16: PIN DEFINITION OF TUNABLE ANTENNA CONTROL INTERFACE* .......................................... 38 TABLE 17: PIN DEFINITION OF CONFIGURATION PINS .............................................................................. 38 TABLE 18: LIST OF CONFIGURATION PINS .................................................................................................. 38 TABLE 19: EM06-E OPERATING FREQUENCIES .......................................................................................... 41 TABLE 20: EM06-J OPERATING FREQUENCIES ........................................................................................... 41 TABLE 21: EM06-A* OPERATING FREQUENCIES ......................................................................................... 42 TABLE 22: EM06-LA* OPERATING FREQUENCIES ....................................................................................... 43 TABLE 23: ANTENNA REQUIREMENTS .......................................................................................................... 44 TABLE 24: MAJOR SPECIFICATIONS OF THE RF CONNECTOR ................................................................. 45 TABLE 25: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 48 TABLE 26: POWER SUPPLY REQUIREMENTS .............................................................................................. 48 TABLE 27: I/O REQUIREMENTS ...................................................................................................................... 49 TABLE 28: OPERATION AND STORAGE TEMPERATURES .......................................................................... 49 TABLE 29: EM06-E CURRENT CONSUMPTION ............................................................................................. 50 TABLE 30: EM06-J CURRENT CONSUMPTION ............................................................................................. 52 TABLE 31: RF OUTPUT POWER ..................................................................................................................... 54 TABLE 32: EM06-E CONDUCTED RF RECEIVING SENSITIVITY ................................................................. 54 TABLE 33: EM06-J CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 55 TABLE 34: ELECTROSTATIC DISCHARGE CHARACTERISTICS (TEMPERATURE: 25C, HUMIDITY: 40%)
................................................................................................................................................................... 56 TABLE 35: RELATED DOCUMENTS ................................................................................................................ 62 TABLE 36: TERMS AND ABBREVIATIONS ...................................................................................................... 62 EM06_Hardware_Design 5 / 63 LTE-A Module Series EM06 Hardware Design Figure Index FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 13 FIGURE 2: PIN ASSIGNMENT ......................................................................................................................... 15 FIGURE 3: POWER SUPPLY LIMITS DURING RADIO TRANSMISSION ....................................................... 20 FIGURE 4: REFERENCE CIRCUIT OF VCC .................................................................................................... 21 FIGURE 5: REFERENCE DESIGN OF POWER SUPPLY ............................................................................... 22 FIGURE 6: TURN ON THE MODULE THROUGH GPIO CONTROLLED FULL_CARD_POWER_OFF# ....... 23 FIGURE 7: TURN ON THE MODULE AUTOMATICALLY ................................................................................. 23 FIGURE 8: TIMING OF TURNING ON MODULE ............................................................................................. 24 FIGURE 9: TIMING OF TURNING OFF THE MODULE THROUGH FULL_CARD_POWER_OFF# ............... 24 FIGURE 10: REFERENCE CIRCUIT OF RESET# BY USING DRIVING CIRCUIT ......................................... 25 FIGURE 11: REFERENCE CIRCUIT OF RESET# BY USING BUTTON ......................................................... 26 FIGURE 12: TIMING OF RESETTING MODULE ............................................................................................. 26 FIGURE 13: REFERENCE CIRCUIT OF NORMALLY SHORT-CIRCUITED (U)SIM CARD CONNECTOR ... 28 FIGURE 14: REFERENCE CIRCUIT OF NORMALLY OPEN (U)SIM CARD CONNECTOR .......................... 28 FIGURE 15: REFERENCE CIRCUIT OF A 6-PIN (U)SIM CARD CONNECTOR ............................................. 29 FIGURE 16: REFERENCE CIRCUIT OF USB 2.0 & 3.0 INTERFACE ............................................................. 31 FIGURE 17: PRIMARY MODE TIMING ............................................................................................................ 32 FIGURE 18: AUXILIARY MODE TIMING .......................................................................................................... 33 FIGURE 19: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC .................................... 34 FIGURE 20: WWAN_LED# SIGNAL REFERENCE CIRCUIT DIAGRAM ........................................................ 35 FIGURE 21: WAKE_ON_WAN# BEHAVIOR .................................................................................................... 36 FIGURE 22: WAKE_ON_WAN# SIGNAL REFERENCE CIRCUIT DESIGN .................................................... 37 FIGURE 23: ANTENNA INTERFACES ON THE MODULE .............................................................................. 40 FIGURE 24: EM06 RF CONNECTOR DIMENSIONS (UNIT: MM) ................................................................... 45 FIGURE 25: SPECIFICATIONS OF MATING PLUGS USING 0.81MM COAXIAL CABLES ......................... 46 FIGURE 26: CONNECTION BETWEEN RF CONNECTOR AND MATING PLUG USING 0.81MM COAXIAL CABLE ....................................................................................................................................................... 46 FIGURE 27: CONNECTION BETWEEN RF CONNECTOR AND MATING PLUG USING 1.13MM COAXIAL CABLE ....................................................................................................................................................... 47 FIGURE 28: THERMAL DISSIPATION AREA ON BOTTOM SIDE OF MODULE (TOP VIEW) ....................... 57 FIGURE 29: MECHANICAL DIMENSIONS OF EM06 (UNIT: MM) ................................................................... 58 FIGURE 30: STANDARD DIMENSIONS OF M.2 TYPE 3042-S3 (UNIT: MM) ................................................. 59 FIGURE 31: M.2 NOMENCLATURE ................................................................................................................. 59 FIGURE 32: TOP VIEW OF THE MODULE ...................................................................................................... 60 FIGURE 33: BOTTOM VIEW OF THE MODULE .............................................................................................. 60 EM06_Hardware_Design 6 / 63 LTE-A Module Series EM06 Hardware Design 1 Introduction This document defines EM06 module and describes its air interface and hardware interfaces which are connected with customers applications. This document can help customers to quickly understand the interface specifications, electrical and mechanical details, as well as other related information of EM06 module. To facilitate its application in different fields, reference design is also provided for customers reference. Associated with application notes and user guides, customers can use the module to design and set up mobile applications easily. EM06_Hardware_Design 7 / 63 LTE-A Module Series EM06 Hardware Design 1.1. Safety Information The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EM06 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft. Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities. Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength. The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. EM06_Hardware_Design 8 / 63 LTE-A Module Series EM06 Hardware Design 2 Product Concept 2.1. General Description EM06 is a series of LTE-A/UMTS/HSPA+ wireless communication module with receive diversity. It provides data connectivity on LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA networks with standard PCI Express M.2 interface. EM06 supports embedded operating systems such as Windows CE, Linux and Android, and also provides GNSS1) and voice functionality2) to meet customers specific application demands. EM06 contains four variants: EM06-E, EM06-J, EM06-A* and EM06-LA*. Customers can select a dedicated type based on the region or operator. The following table shows the frequency bands and GNSS type of EM06 series module. Table 1: Frequency Bands and GNSS Type of EM06 Series Module Mode EM06-E EM06-J EM06-A*
EM06-LA*
LTE-FDD
(with Rx-diversity) LTE-TDD
(with Rx-diversity) 2CA B1/B3/B5/B7/
B8/B20/B28/B323) B1/B3/B8/B18/B19/
B26/B28 B2/B4/B5/B7/B12/
B13/B25/B26/B293)/
B30/B66 B2/B3/B4/B5/B7/B8/
B20/B28 B38/B40/B41 B41 Not supported Not supported B1+B1/B5/B8/
B20/B28;
B3+B3/B5/B7/
B8/B20/B28;
B7+B5/B7/B8/
B20/B28;
B20+B323);
B38+B38;
B40+B40;
B41+B41 B1+B1/B8/B18/B19/
B26/B28;
B3+B3/B8/B18/B19/
B26/B28;
B41+B41 B2+B2/B5/B12/
B13/B26/B293);
B4+B4/B5/B12/
B13/B26/B293);
B7+B5/B7/B12/
B13/B26/B293);
B25+B5/B12/
B13/B25/B26/B293);
B30+B5/B12/
B13/B26/B293);
B66+B5/B12/
B2+B2/B5/B8/
B20/B28;
B3+B3/B5/B7/
B8/B20/B28;
B4+B4/B5/B8/
B20/B28;
B7+B5/B7/B8/
B20/B28 EM06_Hardware_Design 9 / 63 LTE-A Module Series EM06 Hardware Design B13/B26/B293)/
B66 WCDMA
(with B1/B3/B5/B8 Rx-diversity) GPS, B1/B3/B6/B8/
B19 GPS, B2/B4/B5 GPS, B2/B3/B4/B5/
B8 GPS, GLONASS, GLONASS, GLONASS, GLONASS, GNSS 1) BeiDou/Compass BeiDou/Compass BeiDou/Compass BeiDou/Compass Galileo, QZSS Galileo, QZSS Galileo, QZSS Galileo, QZSS NOTES 1. 1) GNSS function is optional. 2. 2) EM06 series module (EM06-E/EM06-J/EM06-A*/EM06-LA*) contains Telematics version and Data-only version. Telematics version supports voice and data functions, while Data-only version only supports data function. 3. 3) LTE-FDD B29 and B32 support Rx only and are only for secondary component carrier. 4. * means under development. EM06 can be applied in the following fields:
Rugged Tablet PC and Laptop Computer Remote Monitor System Vehicle System Wireless POS System Smart Metering System Wireless Router and Switch Other Wireless Terminal Devices 2.2. Key Features The following table describes the detailed features of EM06. Table 2: Key Features of EM06 Feature Details Function Interface PCI Express M.2 Interface Power Supply Supply voltage: 3.135V~4.4V Typical supply voltage: 3.7V EM06_Hardware_Design 10 / 63 LTE-A Module Series EM06 Hardware Design Transmitting Power Class 3 (23dBm2dB) for LTE-TDD bands Class 3 (23dBm2dB) for LTE-FDD bands Class 3 (24dBm+1/-3dB) for WCDMA Support up to LTE Cat 6 Support 1.4MHz to 40MHz (2CA) RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 300Mbps (DL)/50Mbps (UL) TDD: Max 226Mbps (DL)/28Mbps (UL) Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA Support QPSK, 16-QAM and 64-QAM modulation UMTS Features DC-HSDPA: Max 42Mbps (DL) HSUPA: Max 5.76Mbps (UL) WCDMA: Max 384Kbps (DL)/Max 384Kbps (UL) Support PPP/QMI/NTP*/TCP*/UDP*/FTP*/HTTP*/PING*/HTTPS*/
SMTP*/MMS*/FTPS*/SMTPS*/SSL* protocols Internet Protocol Features Support the protocols PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) usually used SMS for PPP connections Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default
(U)SIM Interfaces Include USIM1 and USIM2 interfaces Support (U)SIM card: 1.8V, 3.0V Support Dual SIM Single Standby*
Support one digital audio interface: PCM interface Audio Feature WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression Used for audio function with external codec Support 16-bit linear data format PCM Interface Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization Compliant with USB 3.0 and 2.0 specifications, with maximum transmission rates up to 5Gbps on USB 3.0 and 480Mbps on USB 2.0. Used for AT command communication, data transmission, firmware USB Interface upgrade, software debugging, GNSS NMEA sentence output and voice over USB*
Support USB serial drivers for: Windows 7/8/8.1/10, Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x Antenna Interface Include main antenna, diversity antenna and GNSS antenna interfaces EM06_Hardware_Design 11 / 63 LTE-A Module Series EM06 Hardware Design Rx-diversity Support LTE/WCDMA Rx-diversity GNSS Features AT Commands Gen8C Lite of Qualcomm Protocol: NMEA 0183 Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands Physical Characteristics Temperature Range Size: (42.00.15)mm (30.00.15)mm (2.30.1)mm Weight: approx. 6.0g Operation temperature range: -30C~ +70C 1) Extended temperature range: -40C~ +85C 2) Storage temperature range: -40C ~ +90C Firmware Upgrade USB 2.0 interface and DFOTA*
All hardware components are fully compliant with EU RoHS directive RoHS NOTES 1. 2. 1) Within operation temperature range, the module is 3GPP compliant. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operating temperature levels, the module will meet 3GPP specifications again. 3.
* means under development. EM06_Hardware_Design 12 / 63 LTE-A Module Series EM06 Hardware Design 2.3. Functional Diagram The following figure shows a block diagram of EM06. Figure 1: Functional Diagram 2.4. Evaluation Board In order to help customers develop applications conveniently with EM06, Quectel supplies the evaluation board (M.2 EVB), USB to RS-232 converter cable, USB type-C cable, earphone, antenna and other peripherals to control or test the module. For more details, please refer to document [1]. EM06_Hardware_Design 13 / 63 BasebandPMICTransceiverANT_MAINANT_DIVANT_GNSSAPTVCCRESET#19.2MXOControlIQControlTxPRxDRxPCI Express M.2 Key-B InterfaceFULL_CARD_POWER_OFF#W_DISABLE1#USB2.0&USB3.0(U)SIM1&(U)SIM2WWAN_LED#WAKE_ON_WAN#NAND +DDR2 SDRAMPCMW_DISABLE2#GPIOsTx/Rx Blocks LTE-A Module Series EM06 Hardware Design 3 Application Interfaces The physical connections and signal levels of EM06 comply with PCI Express M.2 specifications. This chapter mainly describes the definition and application of the following interfaces/signals/pins of EM06:
Power supply
(U)SIM interfaces USB interface PCM and I2C interfaces Control and indicator signals Tunable antenna control interface*
Configuration pins NOTE
* means under development. EM06_Hardware_Design 14 / 63 LTE-A Module Series EM06 Hardware Design 3.1. Pin Assignment The following figure shows the pin assignment of EM06. The top side contains EM06 module and antenna connectors. Figure 2: Pin Assignment EM06_Hardware_Design 15 / 63 PIN2PIN74BOTPIN1PIN75TOPPin NameNo.CONFIG_275GND73GND71CONFIG_169RESET#67ANTCTL365ANTCTL263ANTCTL161ANTCTL059GND57NC55NC53GND51NC49NC47GND45NC43NC41GND39USB3.0_RX+37USB3.0_RX-35GND33USB3.0_TX+31USB3.0_TX-29GND27DPR25WAKE_ON_WAN#23CONFIG_021NotchNotchNotchNotchGND11USB_DM9USB_DP7GND5GND3CONFIG_31No.Pin Name74VCC72VCC70VCC68NC66USIM1_DET64RESERVED62RESERVED60RESERVED58I2C_SCL56I2C_SDA54NC52NC50NC48USIM2_VDD46USIM2_RESET44USIM2_CLK42USIM2_DATA40USIM2_DET38NC36USIM1_VDD34USIM1_DATA32USIM1_CLK30USIM1_RESET28PCM_SYNC26W_DISABLE2#24PCM_OUT22PCM_IN20PCM_CLKNotchNotchNotchNotch10WWAN_LED#8W_DISABLE1#6FULL_CARD_POWER_OFF#4VCC2VCCPIN11PIN10 LTE-A Module Series EM06 Hardware Design 3.2. Pin Description The following tables show the pin definition and description of EM06 on the 75-pin application. Table 3: Definition of I/O Parameters Type IO DI DO OD PI PO Description Bidirectional Digital input Digital output Open drain Power input Power output Table 4: Pin Description Pin No. M.2 Socket 2 USB 3.0-Based Pinout EM06 Pin Name I/O Description Comment 1 CONFIG_3 CONFIG_3 EM06 is configured as Not connected internally. WWAN-USB 3.0. 2 3 4 5 6 3.3V VCC PI Power supply Vmin=3.135V Vnorm=3.7V Vmax=4.4V GND GND Ground 3.3V VCC PI Power supply Vmin=3.135V Vnorm=3.7V Vmax=4.4V GND GND Ground FULL_CARD_ FULL_CARD_ POWER_OFF#
POWER_OFF#
A signal to control power-on/-off of the module. When it is at low DI level, the module powers off. When it is at high level, the module powers on. Pulled down internally 7 USB_D+
USB_DP IO USB 2.0 differential data bus (+) EM06_Hardware_Design 16 / 63 LTE-A Module Series EM06 Hardware Design 8 9 W_DISABLE1#
W_DISABLE1#
DI Airplane mode control. 1.8V/3.3V Active low. power domain USB_D-
USB_DM IO USB 2.0 differential data bus (-) 10 GPIO_9 WWAN_LED#
OD It allows the module to provide It is an open collector and active low signal. RF status indication via LED devices provided by the system. 3.3V power domain 11 GND 12 Key 13 Key 14 Key 15 Key 16 Key 17 Key 18 Key 19 Key GND Notch Notch Notch Notch Notch Notch Notch Notch Ground Notch Notch Notch Notch Notch Notch Notch Notch 20 GPIO_5
(AUDIO_0) PCM_CLK IO PCM data bit clock. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. Connected to GND internally. 1.8V power domain 21 CONFIG_0 CONFIG_0 EM06 is configured as WWAN-USB 3.0. 22 23 24 GPIO_6
(AUDIO_1) PCM_IN DI PCM data input GPIO_11
(WOWWAN#) WAKE_ON_ WAN#
OD A signal to wake up the host. It is an open collector and active low signal. GPIO_7
(AUDIO_2) PCM_OUT DO PCM data output 25 DPR DPR DI 26 GPIO_10
(W_DISABLE2#) W_DISABLE2#* DI Dynamic power reduction. High level by default. GNSS enable control. Active low. 1.8V power domain 1.8V power domain 1.8V power domain 1.8V power domain 1.8V/3.3V power domain 27 GND GND Ground 28 GPIO_8
(AUDIO_3) PCM_SYNC IO PCM data frame synchronization 1.8V power signal domain EM06_Hardware_Design 17 / 63 LTE-A Module Series EM06 Hardware Design 29 USB3.0-TX-
USB3.0_TX-
DO USB 3.0 transmit data (-) 30 UIM-RESET USIM1_RESET DO
(U)SIM1 card reset 1.8V/3.0V power domain 31 USB3.0-TX+
USB3.0_TX+
DO USB 3.0 transmit data (+) 32 UIM-CLK USIM1_CLK DO
(U)SIM1 card clock 1.8V/3.0V power domain 33 GND GND Ground 34 UIM-DATA USIM1_DATA IO
(U)SIM1 card data Pulled up to USIM2_VDD internally 35 USB3.0-RX-
USB3.0_RX-
DI USB 3.0 receive data (-) 36 UIM-PWR USIM1_VDD PO Power supply for (U)SIM1 card 37 USB3.0-RX+
USB3.0_RX+
DI USB 3.0 receive data (+) 38 N/C 39 GND 40 GPIO_0
(SIM_DET2) NC GND NC Ground USIM2_DET DI
(U)SIM2 card insertion detection 41 N/C NC NC 42 GPIO_1
(SIM_DAT2) USIM2_DATA IO
(U)SIM2 card data 43 N/C NC NC 44 GPIO_2
(SIM_CLK2) USIM2_CLK DO
(U)SIM2 card clock 1.8V/3.0V power domain Pulled up internally Pulled up to USIM2_VDD internally 1.8V/3.0V power domain 45 GND GND Ground 46 GPIO_3
(SIM_RST2) USIM2_RESET DO
(U)SIM2 card reset 1.8V/3.0V power domain 47 N/C NC NC 48 GPIO_4
(SIM_PWR2) 49 N/C 50 N/C 51 GND USIM2_VDD PO Power supply for (U)SIM2 card 1.8V/3.0V power domain NC NC GND NC NC Ground EM06_Hardware_Design 18 / 63 LTE-A Module Series EM06 Hardware Design 52 N/C 53 N/C 54 N/C 55 N/C NC NC NC NC NC NC NC NC 56 N/C I2C_SDA IO I2C serial data. Used for external codec. 57 GND GND Ground 58 N/C I2C_SCL DO I2C serial clock. Used for external codec. 59 ANTCTL0 ANTCTL0*
DO Tunable antenna control. 1.8V power domain 60 COEX3 RESERVED Reserved 61 ANTCTL1 ANTCTL1*
DO Tunable antenna control. 1.8V power domain 62 COEX2 RESERVED Reserved 63 ANTCTL2 ANTCTL2*
DO Tunable antenna control. 1.8V power domain 64 COEX1 RESERVED Reserved 65 ANTCTL3 ANTCTL3*
DO Tunable antenna control. 66 SIM_DETECT USIM1_DET DI
(U)SIM1 card insertion detection 67 RESET#
RESET#
DI System reset. Active low. 68 SUSCLK (32kHz) NC 69 CONFIG_1 CONFIG_1 NC Connected to GND internally. EM06 is configured as WWAN-USB 3.0. 70 3.3V VCC PI Power supply 1.8V power domain Pulled up internally Vmin=3.135V Vnorm=3.7V Vmax=4.4V 71 GND GND Ground 72 3.3V VCC PI Power supply Vmin=3.135V Vnorm=3.7V Vmax=4.4V 73 GND GND Ground EM06_Hardware_Design 19 / 63 LTE-A Module Series EM06 Hardware Design 74 3.3V VCC PI Power supply Vmin=3.135V Vnorm=3.7V Vmax=4.4V 75 CONFIG_2 CONFIG_2 EM06 is configured as Not connected internally. WWAN-USB 3.0. NOTES 1. Keep all NC, reserved and unused pins unconnected. 2.
* means under development. 3.3. Power Supply The following table shows pin definition of VCC pins and ground pins. Table 5: Definition of VCC and GND Pins Pin No. Pin Name I/O Power Domain Description 2, 4, 70, 72, 74 VCC PI 3.135V~4.4V 3.7V typical DC supply 3, 5, 11, 27, 33, 39, 45, 51, 57, 71, GND Ground 73 3.3.1. Decrease Voltage Drop The power supply range of the module is from 3.135V to 4.4V. Please make sure that the input voltage will never drop below 3.135V, otherwise the module will be powered off automatically. The following figure shows the maximum voltage drop during radio transmission in 3G and 4G networks. Figure 3: Power Supply Limits during Radio Transmission EM06_Hardware_Design 20 / 63 VCCMax Tx powerMin.3.135VRippleDropMax Tx power LTE-A Module Series EM06 Hardware Design To decrease voltage drop, a bypass capacitor of about 220F with low ESR (ESR=0.7) should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VCC pins. The main power supply from an external application has to be a single voltage source. The width of VCC trace should be no less than 2mm. In principle, the longer the VCC trace is, the wider it will be. In addition, in order to get a stable power source, it is recommended to use a zener diode with reverse zener voltage of 5.1V and dissipation power more than 0.5W. The following figure shows a reference circuit of VCC. Figure 4: Reference Circuit of VCC 3.3.2. Reference Design for Power Supply Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used to supply power for the module. If there is a big voltage difference between the input source and the desired output
(VCC), a buck converter is preferred to be used as the power supply. The following figure shows a reference design for +5V input power source. The typical output of the power supply is about 3.7V and the maximum load current is 3A. EM06_Hardware_Design 21 / 63 ModuleVCCVCCC1220uF+D15.1VC21uFC3100nFC433pFC510pF LTE-A Module Series EM06 Hardware Design Figure 5: Reference Design of Power Supply NOTE In order to avoid damages to the internal flash, please do not switch off the power supply directly when the module is working. It is suggested that the power supply can be cut off after pulling down FULL_CARD_POWER_OFF# for about 100ms. 3.4. Turn on and off Scenarios 3.4.1. Turn on the Module Driving the FULL_CARD_POWER_OFF# pin to a high level will power on the module. The following table shows the definition of FULL_CARD_POWER_OFF#. Table 6: Definition of FULL_CARD_POWER_OFF# Pin Pin Name Pin No. Description DC Characteristics Comment A signal to control power-on/-off FULL_CARD of the module. When it is at low VIHmax=4.4V _POWER_ 6 level, the module powers off. VIHmin=0.7V OFF#
When it is at high level, the VILmax=0.5V Pulled down internally. module powers on. EM06_Hardware_Design 22 / 63 LDO_INC1C2MIC29302WUU1INOUTENGNDADJ24135VCC100nFC3470uFC4100nFR2100K 1%51K 1%R3470uF470R51KR4R1MCU_POWER_ON/OFF47K4.7KR5R6C5C633pF10pFTVSD1 LTE-A Module Series EM06 Hardware Design 3.4.1.1. Turn on the Module Through GPIO Controlled FULL_CARD_POWER_OFF#
It is recommended to use a GPIO from host to control FULL_CARD_POWER_OFF#. A simple reference circuit is illustrated in the following figure. Figure 6: Turn on the Module Through GPIO Controlled FULL_CARD_POWER_OFF#
3.4.1.2. Turn on the Module Automatically If FULL_CARD_POWER_OFF# is pulled up to 3.3V with a 5k~10k resistor, the module will be powered on automatically when the power supply for VCC is applied, and will be powered off when the power supply is removed. A reference circuit is shown in the following figure. Figure 7: Turn on the Module Automatically EM06_Hardware_Design 23 / 63 ModuleHostGNDGNDGPIOFULL_CARD_POWER_OFF#3.3VModuleFULL_CARD_POWER_OFF#10K3.3V LTE-A Module Series EM06 Hardware Design The turn on scenario is illustrated in the following figure. Figure 8: Timing of Turning on Module NOTE Please make sure that VCC is stable before pulling down FUL_CARD_POWER_OFF# pin. The time between them is no less than 30ms. 3.4.2. Turn off the Module 3.4.2.1. Turn off the Module Through FULL_CARD_POWER_OFF#
Driving the FULL_CARD_POWER_OFF# pin to low will turn off the module. The power-down scenario is illustrated in the following figure. Figure 9: Timing of Turning off the Module Through FULL_CARD_POWER_OFF#
EM06_Hardware_Design 24 / 63 VIL0.2VVIH1.19VVCCFULL_CARD_POWER_OFF#RESET#BootingActiveModule StatusNOTE12.5sOFFVCCFULL_CARD_POWER_OFF#RUNNINGOFFModuleStatusON LTE-A Module Series EM06 Hardware Design 3.4.2.2. Turn off the Module via AT Command The module can also be turned off by AT+QPOWD command. For more details about the command, please refer to document [2]. 3.5. Reset the Module The RESET# pin is used to reset the module. The module can be reset by driving RESET# to a low level voltage for 250ms~600ms. Table 7: RESET# Pin Definition Pin Name Pin No. Description DC Characteristics Comment RESET#
67 Reset the module VIHmin=1.3V VIHmax=2.1V VILmax=0.5V An open collector/collector driver or button can be used to control the RESET# pin. Figure 10: Reference Circuit of RESET# by Using Driving Circuit EM06_Hardware_Design 25 / 63 Reset pulseRESET#4.7K47K LTE-A Module Series EM06 Hardware Design Figure 11: Reference Circuit of RESET# by Using Button The reset scenario is illustrated in the following figure. Figure 12: Timing of Resetting Module NOTE Please ensure that there is no large capacitance on RESET# pin. 3.6. (U)SIM Interfaces The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards are supported, and Dual SIM Single Standby* function is supported. EM06_Hardware_Design 26 / 63 RESET#S2Close to S2TVSVIL0.5VVIH1.3VVCC250msResettingModule StatusRunningRESET#Restart600ms LTE-A Module Series EM06 Hardware Design Table 8: Pin Definition of (U)SIM Interfaces Pin Name Pin No. I/O Description Comment USIM1_VDD 36 PO Power supply for (U)SIM1 Either 1.8V or 3.0V is supported card by the module automatically. USIM1_DATA 34 IO Data signal of (U)SIM1 card USIM1_CLK 32 DO Clock signal of (U)SIM1 card USIM1_RESET 30 DO Reset signal of (U)SIM1 card
(U)SIM1 card insertion When (U)SIM1 card is present, it Pulled up internally. USIM1_DET 66 DI detection. is at high level. Active high. When (U)SIM1 card is absent, it is at low level. USIM2_VDD 48 PO Power supply for (U)SIM2 Either 1.8V or 3.0V is supported card by the module automatically. USIM2_DATA 42 IO Data signal of (U)SIM2 card USIM2_CLK 44 DO Clock signal of (U)SIM2 card USIM2_RESET 46 DO Reset signal of (U)SIM2 card
(U)SIM2 card insertion When (U)SIM2 card is present, it Pulled up internally. USIM2_DET 40 DI detection. is at high level. Active high. When (U)SIM2 card is absent, it is at low level. EM06 supports (U)SIM card hot-plug via the USIM_DET pin, which is a level trigger pin. The USIM_DET is normally short-circuited to ground when (U)SIM card is not inserted. When the (U)SIM card is inserted, the USIM_DET will change from low to high level. The rising edge will indicate insertion of the (U)SIM card. When the (U)SIM card is removed, the USIM_DET will change from high to low level. This falling edge will indicate the absence of the (U)SIM card. The following figure shows a reference design of (U)SIM interface with normally short-circuited (U)SIM card connector. EM06_Hardware_Design 27 / 63 LTE-A Module Series EM06 Hardware Design Figure 13: Reference Circuit of Normally Short-Circuited (U)SIM Card Connector Normally Short-Circuited (U)SIM Card Connector:
When the (U)SIM is absent, CD is short-circuited to SW and USIM_DET is at low level. When the (U)SIM is inserted, CD is open to SW and USIM_DET is at high level. The following figure shows a reference design of (U)SIM interface with normally open (U)SIM card connector. Figure 14: Reference Circuit of Normally Open (U)SIM Card Connector Normally Open (U)SIM Card Connector:
When the (U)SIM is absent, CD is open to SW and USIM_DET is at low level. When the (U)SIM is inserted, CD is short-circuited to SW and USIM_DET is at high level. EM06_Hardware_Design 28 / 63 ModuleUSIM_VDDUSIM_RESETUSIM_CLKUSIM_DATAUSIM_DET22R22R22R100nF(U)SIM Card ConnectorGNDGND33pF33pF33pFVCCRSTCLKIOVPPGNDGNDUSIM_VDD15KGNDCDSWModuleUSIM_VDDUSIM_RESETUSIM_CLKUSIM_DATAUSIM_DET22R22R22R100nF(U)SIM Card ConnectorGND33pF33pF33pFVCCRSTCLKIOVPPGNDGNDUSIM_VDD15KGNDCD1.8V4.7K33KSW LTE-A Module Series EM06 Hardware Design If (U)SIM card detection function is not needed, please keep USIM_DET unconnected. A reference circuit for (U)SIM card interface with a 6-pin (U)SIM card connector is illustrated in the following figure. Figure 15: Reference Circuit of a 6-Pin (U)SIM Card Connector In order to enhance the reliability and availability of the (U)SIM card in customers applications, please follow the criteria below in (U)SIM circuit design:
Keep placement of (U)SIM card connector as close as possible to the module. Keep the trace length as less than 200mm as possible. Keep (U)SIM card signals away from RF and VCC traces. Assure the ground between the module and the (U)SIM card connector short and wide. Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential. To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 10pF. The 22 resistors should be added in series between the module and the (U)SIM card connector so as to suppress EMI spurious transmission and enhance ESD protection. The 33pF capacitors are used to filter out RF interference. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector. The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the (U)SIM card connector. NOTE S
* means under development. EM06_Hardware_Design 29 / 63 ModuleUSIM_VDDUSIM_GNDUSIM_RESETUSIM_CLKUSIM_DATA22R22R22R100nF(U)SIM Card ConnectorGND33pF33pF33pFVCCRSTCLKIOVPPGNDGND15KUSIM_VDD LTE-A Module Series EM06 Hardware Design 3.7. USB Interface EM06 provides one integrated Universal Serial Bus (USB) interface which complies with the USB 3.0/2.0 specifications and supports super speed (5Gbps) on USB 3.0, high speed (480 Mbps) and full speed (12 Mbps) modes on USB 2.0. The USB interface is used for AT command communication, data transmission, GNSS NMEA output, software debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB interface. Table 9: Pin Definition of USB Interface Pin No. Pin Name I/O Description Comment USB_DP IO USB 2.0 differential data bus (+) USB_DM IO USB 2.0 differential data bus (-) Require differential impedance of 90 USB3.0_TX-
DO USB 3.0 transmit data (-) USB3.0_TX+ DO USB 3.0 transmit data (+) Require differential impedance of 90 USB3.0_RX- DI USB 3.0 receive data (-) USB3.0_RX+ DI USB 3.0 receive data (+) Require differential impedance of 90 7 9 29 31 35 37 For more details about the USB 2.0 & 3.0 specifications, please visit http://www.usb.org/home. The USB interface is recommended to be reserved for firmware upgrade in customers designs. The following figure shows a reference circuit of USB 2.0 & USB 3.0 interface. EM06_Hardware_Design 30 / 63 LTE-A Module Series EM06 Hardware Design Figure 16: Reference Circuit of USB 2.0 & 3.0 Interface In order to ensure the integrity of USB 2.0 & 3.0 data line signal, R1/R2/R3/R4 components must be placed close to the module, capacitors C1 and C2 have been placed inside the module, capacitors C3 and C4 must be placed close to the MCU, and these components should be placed close to each other. In order to ensure the USB interface design corresponding with USB 2.0 & 3.0 specifications, please comply with the following principles:
It is important to route the USB 2.0 & 3.0 signal traces as differential pairs with total grounding. 1) For USB 2.0 routing traces, the trace impedance of the differential pair should be 90, and the trace length difference between the differential pair should be less than 2mm. 2) For USB 3.0 routing traces, the trace impedance of Tx and Rx differential pairs should be 90, and the trace length difference between Tx and Rx differential pairs should be less than 0.7mm. Do not route signal traces under crystals, oscillators, magnetic devices or RF signal traces. It is important to route the USB 2.0 & 3.0 differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides. If USB connector is used, please keep the ESD protection components as close as possible to the USB connector. Pay attention to the influence of junction capacitance of ESD protection components on USB 2.0 & 3.0 data lines. The capacitance value of ESD protection components should be less than 2.0pF for USB 2.0, and less than 0.4pF for USB 3.0. If possible, reserve a 0R resistor on USB_DP and USB_DM lines, respectively. EM06_Hardware_Design 31 / 63 GNDUSB3.0_TX-USB3.0_TX+GNDUSB3.0_RX-USB3.0_RX+USB3.0_RX-USB3.0_RX+USB3.0_TX-USB3.0_TX+C3C4USB_DPUSB_DMR1R20R0RUSB_DMUSB_DPC1C2ESD Array100nF100nF100nF100nFModuleMCUR3R4NM_0RNM_0RTest PointsMinimize these stubs LTE-A Module Series EM06 Hardware Design NOTE S
* means under development. 3.8. PCM and I2C Interfaces EM06 supports audio communication via Pulse Code Modulation (PCM) digital interface and I2C interface. The PCM interface supports the following modes:
Primary mode (short frame synchronization, works as both master and slave) Auxiliary mode (long frame synchronization, works as master only) In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz PCM_CLK at 16kHz PCM_SYNC. In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 256kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only. EM06 supports 16-bit linear data format. The following figures show the primary modes timing relationship with 8kHz PCM_SYNC and 2048kHz PCM_CLK, as well as the auxiliary modes timing relationship with 8kHz PCM_SYNC and 256kHz PCM_CLK. Figure 17: Primary Mode Timing EM06_Hardware_Design 32 / 63 PCM_CLKPCM_SYNCPCM_OUTMSBLSBMSB125us12256255PCM_INMSBLSBMSB LTE-A Module Series EM06 Hardware Design Figure 18: Auxiliary Mode Timing The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design. Table 10: Pin Definition of PCM and I2C Interfaces Pin Name Pin No. I/O Description Comment PCM_IN 22 DI PCM data input 1.8V power domain. PCM_OUT 24 DO PCM data output 1.8V power domain. PCM_SYNC 28 IO PCM data frame synchronization signal 1.8V power domain. PCM_CLK 20 IO PCM data bit clock 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. Used for external codec. Require an external pull-up to I2C_SCL I2C_SDA 58 56 DO I2C serial clock IO I2C serial data 1.8V. The clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. Please refer to document [2] for details about AT+QDAI command. The following figure shows a reference design of PCM interface with an external codec IC. EM06_Hardware_Design 33 / 63 PCM_CLKPCM_SYNCPCM_OUTMSBLSBPCM_IN125usMSB123231LSB LTE-A Module Series EM06 Hardware Design Figure 19: Reference Circuit of PCM Application with Audio Codec NOTES 1. It is recommended to reserve an RC (R=22, C=22pF) circuit on the PCM lines, especially for PCM_CLK. 2. EM06 works as a master device pertaining to I2C interface. 3.9. Control and Indicator Signals The following table shows the pin definition of control and indicator signals. Table 11: List of Control and Indicator Signals Pin No. Pin Name I/O Power Domain Description 10 WWAN_LED#
OD 3.3V WAKE_ON_WAN# OD 1.8V It is an open collector and active low signal. It is used to indicate the RF status of the module. A signal to wake up the host. It is an open collector and active low signal. W_DISABLE1#
DI 1.8V/3.3V Airplane mode control. Active low. W_DISABLE2#*
DI 1.8V/3.3V GNSS enable control. Active low. DPR DI 1.8V Dynamic power reduction. High level by default. 23 8 26 25 EM06_Hardware_Design 34 / 63 PCM_INPCM_OUTPCM_SYNCPCM_CLKI2C_SCLI2C_SDAModule1.8V4.7KBCLKLRCKDACADCSCLSDABIASMICBIASINPINNLOUTPLOUTNCodec4.7K LTE-A Module Series EM06 Hardware Design NOTE
* means under development. 3.9.1. W_DISABLE1# Signal EM06 provides a W_DISABLE1# signal to disable or enable airplane mode through hardware operation. The W_DISABLE1# pin is pulled up by default. Driving it to low level will let the module enter into airplane mode. In airplane mode, the RF function will be disabled. The RF function can also be enabled or disabled through software AT commands. The following table shows the RF function status of the module. Table 12: RF Function Status W_DISABLE1# Level AT Commands RF Function Status High Level AT+CFUN=1 Enabled High Level Low Level AT+CFUN=0 AT+CFUN=4 AT+CFUN=0 AT+CFUN=1 AT+CFUN=4 Disabled Disabled 3.9.2. WWAN_LED# Signal The WWAN_LED# signal is used to indicate the RF status of the module, and its typical current consumption is up to 40mA. In order to reduce the current consumption of the LED, a resistor must be placed in series with the LED, as illustrated in the figure below. The LED is ON when the WWAN_LED# signal is at a low voltage level. Figure 20: WWAN_LED# Signal Reference Circuit Diagram EM06_Hardware_Design 35 / 63 WWAN_LED#VCCR LTE-A Module Series EM06 Hardware Design The following table shows the RF status indicated by WWAN_LED# signal. Table 13: Network Status Indications of WWAN_LED# Signal WWAN_LED# Level Description Low Level (LED ON) RF function is turned on High Level (LED OFF) RF function is turned off if any of the following circumstances occurs:
The (U)SIM card is not powered W_DISABLE1# signal is at low level (airplane mode enabled). AT+CFUN=4 (RF function disabled) 3.9.3. WAKE_ON_WAN# Signal The WAKE_ON_WAN# signal is an open collector signal, which requires a pull-up resistor on the host. When a URC returns, a 1s low level pulse signal will be outputted to wake up the host. The module operation status indicated by WAKE_ON_WAN# is shown as below. Table 14: State of the WAKE_ON_WAN# Signal WAKE_ON_WAN# State Module Operation Status Output a 1s low level pulse signal Call/SMS/Data is incoming (to wake up the host) Always at high level Idle/Sleep Figure 21: WAKE_ON_WAN# Behavior EM06_Hardware_Design 36 / 63 Wake up the host1sHighLow(external pull-up) LTE-A Module Series EM06 Hardware Design Figure 22: WAKE_ON_WAN# Signal Reference Circuit Design 3.9.4. DPR Signal EM06 provides a DPR (Dynamic Power Reduction) signal for body SAR (Specific Absorption Rate) detection. The signal is sent by a host system proximity sensor to EM06 module to provide an input trigger which will reduce the output power in the radio transmission. Table 15: Function of the DPR Signal DPR Level Function High/Floating Max transmitting power will NOT be backed off Max transmitting power will be backed off by executing AT+QCFG="sarcfg"
command Low NOTE Please refer to document [2] for more details about AT+QCFG="sarcfg" command. 3.10. Tunable Antenna Control Interface*
ANTCTL[0:3] signals are used for tunable antenna control and should be routed to an appropriate antenna control circuitry. More details about the interface will be added in the future version of the document. EM06_Hardware_Design 37 / 63 ModuleHostWAKE_ON_WAN#10KVCC from the Host LTE-A Module Series EM06 Hardware Design Table 16: Pin Definition of Tunable Antenna Control Interface*
Pin Name Pin No. I/O Description Comment ANTCTL0*
59 DO Tunable antenna control 1.8V power domain ANTCTL1*
61 DO Tunable antenna control 1.8V power domain ANTCTL2*
63 DO Tunable antenna control 1.8V power domain ANTCTL3*
65 DO Tunable antenna control 1.8V power domain NOTE
* means under development. 3.11. Configuration Pins EM06 provides 4 configuration pins, and it is configured as WWAN-USB 3.0 2. Table 17: Pin Definition of Configuration Pins Pin No. Pin Name I/O Power Domain Description CONFIG_0 CONFIG_1 CONFIG_2 CONFIG_3 0 0 0 0 Connected to GND internally. Connected to GND internally. NC NC 21 69 75 1 The 4 pins on EM06 module are defined as below:
Table 18: List of Configuration Pins Config_0 Config_1 Config_2 Config_3 Module Type and Port
(Pin 21)
(Pin 69)
(Pin 75)
(Pin 1) Main Host Interface Configuration GND GND NC NC WWAN-USB 3.0 2 EM06_Hardware_Design 38 / 63 LTE-A Module Series EM06 Hardware Design 4 GNSS Receiver 4.1. General Description EM06 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou/Compass, Galileo and QZSS). EM06 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default. By default, EM06 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to document [3]. EM06_Hardware_Design 39 / 63 LTE-A Module Series EM06 Hardware Design 5 Antenna Interfaces EM06 provides a main antenna interface, an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The antenna ports have an impedance of 50. 5.1. Main/Rx-diversity Antenna Interfaces The main/Rx-diversity/GNSS antenna interfaces are shown as below. Figure 23: Antenna Interfaces on the Module EM06_Hardware_Design 40 / 63 GNSS Antenna InterfaceRx-diversity Antenna InterfaceMain Antenna Interface LTE-A Module Series EM06 Hardware Design 5.1.1. Operating Frequency Table 19: EM06-E Operating Frequencies 3GPP Band Transmit Receive WCDMA B1 1920~1980 2110~2170 WCDMA B3 1710~1785 1805~1880 WCDMA B5 824~849 WCDMA B8 880~915 869~894 925~960 LTE B1 LTE B3 LTE B5 LTE B7 LTE B8 LTE B20 LTE B28 1920~1980 2110~2170 1710~1785 1805~1880 824~849 869~894 2500~2570 2620~2690 880~915 832~862 703~748 925~960 791~821 758~803 LTE B32 1)
-
1452~1496 LTE B38 LTE B40 2570~2620 2570~2620 2300~2400 2300~2400 LTE B41 2545~2655 2545~2655 Table 20: EM06-J Operating Frequencies 3GPP Band Transmit Receive WCDMA B1 1920~1980 2110~2170 WCDMA B3 1710~1785 1805~1880 WCDMA B6 WCDMA B8 830~840 880~915 875~885 925~960 Unit MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz Unit MHz MHz MHz MHz EM06_Hardware_Design 41 / 63 LTE-A Module Series EM06 Hardware Design WCDMA B19 830~845 875~890 LTE B1 LTE B3 LTE B8 LTE B18 LTE B19 LTE B26 LTE B28 1920~1980 2110~2170 1710~1785 1805~1880 880~915 815~830 830~845 814~849 703~748 925~960 860~875 875~890 859~894 758~803 LTE B41 2545~2655 2545~2655 Table 21: EM06-A* Operating Frequencies 3GPP Band Transmit Receive WCDMA B2 1850~1910 1930~1990 WCDMA B4 1710~1755 2110~2155 WCDMA B5 824~849 869~894 LTE B2 LTE B4 LTE B5 LTE B7 LTE B12 LTE B13 LTE B25 LTE B26 1850~1910 1930~1990 1710~1755 2110~2155 824~849 869~894 2500~2570 2620~2690 699~716 777~787 729~746 746~756 1850~1915 1930~1995 814~849 LTE B29 1)
-
859~894 716~728 LTE B30 LTE B66 2305~2315 2350~2360 1710~1780 2110~2200 MHz MHz MHz MHz MHz MHz MHz MHz MHz Unit MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz EM06_Hardware_Design 42 / 63 LTE-A Module Series EM06 Hardware Design Table 22: EM06-LA* Operating Frequencies 3GPP Band Transmit Receive WCDMA B2 1850~1910 1930~1990 WCDMA B3 1710~1785 1805~1880 WCDMA B4 1710~1755 2110~2155 WCDMA B5 824~849 WCDMA B8 880~915 869~894 925~960 1850~1910 1930~1990 1710~1785 1805~1880 1710~1755 2110~2155 824~849 869~894 2500~2570 2620~2690 880~915 832~862 703~748 925~960 791~821 758~803 LTE B2 LTE B3 LTE B4 LTE B5 LTE B7 LTE B8 LTE B20 LTE B28 NOTES Unit MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz 1. 1) LTE-FDD B29 and B32 support Rx only and are only for secondary component carrier. 2. * means under development. 5.2. GNSS Antenna Interface The following table shows frequency specification of GNSS antenna interface. Table 19: GNSS Frequency Type Frequency GPS/Galileo/QZSS 1575.421.023 Unit MHz EM06_Hardware_Design 43 / 63 LTE-A Module Series EM06 Hardware Design GLONASS 1597.5~1605.8 BeiDou/Compass 1561.0982.046 MHz MHz 5.3. Antenna Installation 5.3.1. Antenna Requirements The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna. Table 23: Antenna Requirements Type Requirements Frequency range: 1559MHz ~ 1609MHz Polarization: RHCP or linear VSWR: < 2 (Typ.) GNSS 1) Passive antenna gain: > 0dBi Active antenna noise figure: < 1.5dB Active antenna gain: > 0dBi Active antenna embedded LNA gain: < 17dB VSWR: 2 Efficiency: > 30%
Max Input Power: 50W Input Impedance: 50 Cable insertion loss: <1dB
(WCDMA B5/B6/B8/B19, LTE B5/B8/B12/B13/B18/B19/B20/B26/B28/B29) Cable insertion loss: <1.5dB
(WCDMA B1/B2/B3/B4, LTE B1/B2/B3/B4/B25/B32/B66) Cable insertion loss <2dB
(LTE B7/B38/B40/B41/B30) WCDMA/LTE NOTE 1) It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance. 5.3.2. Recommended RF Connector for Antenna Installation EM06 is mounted with standard 2mm 2mm receptacle RF connectors for convenient antenna connection. The connector dimensions are illustrated below:
EM06_Hardware_Design 44 / 63 LTE-A Module Series EM06 Hardware Design Figure 24: EM06 RF Connector Dimensions (Unit: mm) Table 24: Major Specifications of the RF Connector Item Specification Nominal Frequency Range DC to 6GHz Nominal Impedance 50 Temperature Rating
-40C to +85C Voltage Standing Wave Ratio (VSWR) Max 1.3 (DC~3GHz) Max 1.45 (3GHz~6GHz) Meet the requirements of:
The receptacle RF connector used in conjunction with EM06 will accept two types of mating plugs that will meet a maximum height of 1.2mm using a 0.81mm coaxial cable or a maximum height of 1.45mm utilizing a 1.13mm coaxial cable. The following figure shows the specifications of mating plugs using 0.81mm coaxial cables. EM06_Hardware_Design 45 / 63 LTE-A Module Series EM06 Hardware Design Figure 25: Specifications of Mating Plugs Using 0.81mm Coaxial Cables The following figure illustrates the connection between the receptacle RF connector on EM06 and the mating plug using a 0.81mm coaxial cable. Figure 26: Connection between RF Connector and Mating Plug Using 0.81mm Coaxial Cable The following figure illustrates the connection between the receptacle RF connector on EM06 and the mating plug using a 1.13mm coaxial cable. EM06_Hardware_Design 46 / 63 LTE-A Module Series EM06 Hardware Design Figure 27: Connection between RF Connector and Mating Plug Using 1.13mm Coaxial Cable EM06_Hardware_Design 47 / 63 LTE-A Module Series EM06 Hardware Design 6 Electrical, Reliability and Radio Characteristics 6.1. Absolute Maximum Ratings Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table. Table 25: Absolute Maximum Ratings Parameter VCC Voltage at Digital Pins Min.
-0.3
-0.3 Max. Unit 4.7 2.3 V V 6.2. Power Supply Requirements The typical input voltage of EM06 is 3.7V, as specified by PCIe M.2 Electromechanical Spec Rev1.0. The following table shows the power supply requirements of EM06. Table 26: Power Supply Requirements Parameter Description Min. Typ. Max. Unit VCC Power Supply 3.135 3.7 4.4 V EM06_Hardware_Design 48 / 63 LTE-A Module Series EM06 Hardware Design 6.3. I/O Requirements Table 27: I/O Requirements Parameter Description Min. Max. Unit Input high voltage 0.7 VDD18 1) VDD18+0.3 Input low voltage
-0.3 0.3 VDD18 Output high voltage VDD18-0.5 Output low voltage 0 VDD18 0.4 V V V V VIH VIL VOH VOL NOTE 1) VDD18 refers to I/O power domain. 6.4. Operation and Storage Temperatures Table 28: Operation and Storage Temperatures Parameter Min. Operation Temperature Range 1)
-30 Extended Temperature Range 2)
-40 Storage temperature Range
-40 Typ.
+25 NOTES Max. Unit
+70
+85
+90 C C C 1. 2. 1) Within operation temperature range, the module is 3GPP compliant. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again. EM06_Hardware_Design 49 / 63 LTE-A Module Series EM06 Hardware Design 6.5. Current Consumption Table 29: EM06-E Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down Sleep state AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=128 (USB disconnected) WCDMA PF=256 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) LTE-FDD PF=256 (USB disconnected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=128 (USB disconnected) LTE-TDD PF=256 (USB disconnected) 50 2.77 2.91 3.05 2.83 3.88 3.88 4.19 3.79 3.91 4.36 IVBAT WCDMA PF=64 (USB disconnected, band 1) 22.1 uA mA mA mA mA mA mA mA mA mA mA mA Idle state WCDMA PF=64 (USB connected, band 1) 26.27 mA LTE-FDD PF=64 (USB disconnected, band 1) 20.61 mA LTE-FDD PF=64 (USB connected, band 1) 20.72 mA LTE-TDD PF=64 (USB disconnected, band 38) 20.56 mA LTE-TDD PF=64 (USB connected, band 38) 20.96 mA WCDMA B1 HSDPA CH10700 @23dBm WCDMA data WCDMA B1 HSUPA CH10700 @22.4dBm transfer WCDMA B3 HSDPA CH1338 @22.7dBm
(GNSS OFF) WCDMA B3 HSUPA CH1338 @22.1dBm WCDMA B5 HSDPA CH4407 @22.6dBm 565 557 582 580 584 mA mA mA mA mA EM06_Hardware_Design 50 / 63 LTE-A Module Series EM06 Hardware Design WCDMA B5 HSUPA CH4407 @22dBm WCDMA B8 HSDPA CH3012 @22.3dBm WCDMA B8 HSUPA CH3012 @21.8dBm LTE-FDD B1 CH300 @23.8dBm LTE-FDD B3 CH1575 @23.8dBm LTE-FDD B5 CH2525 @23.3dBm LTE-FDD B7 CH3100 @23.48dBm LTE-FDD B8 CH3625 @23.2dBm LTE data transfer
(GNSS OFF) LTE-FDD B20 CH6300 @22.8dBm LTE-FDD B28 CH27460 @22.7dBm LTE-TDD B38 CH38000 @23.8dBm LTE-TDD B40 CH39150 @23.6dBm LTE-TDD B41 CH40740 @23.8dBm 2CA data transfer LTE-FDD B1+B1 @21.8dBm LTE-FDD B1+B5 @21.7dBm LTE-FDD B1+B8 @21.8dBm LTE-FDD B1+B20 @21.9dBm LTE-FDD B1+B28 @21.8dBm LTE-FDD B3+B3 @21.3dBm LTE-FDD B3+B5 @21.2dBm LTE-FDD B3+B7 @21.2dBm LTE-FDD B3+B8 @21.2dBm LTE-FDD B3+B20 @21.2dBm LTE-FDD B3+B28 @21.2dBm LTE-FDD B7+B5 @20.6dBm LTE-FDD B7+B7 @21.5dBm LTE-FDD B7+B8 @21.2dBm 572 566 553 670 830 647 880 640 770 692 341 377 345 811 749 761 810 821 757 734 795 744 801 810 798 803 811 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EM06_Hardware_Design 51 / 63 LTE-A Module Series EM06 Hardware Design LTE-FDD B7+B20 @20.7dBm LTE-FDD B7+B28 @20.1dBm LTE-FDD B20+B32 @21.9dBm LTE-TDD B38+B38 @21.4dBm LTE-TDD B40+B40 @21.8dBm LTE-TDD B41+B41 @21.5dBm WCDMA B1 CH10700 @23.1dBm WCDMA B3 CH1338 @22.6dBm WCDMA B5 CH4407 @22.7dBm WCDMA B8 CH3012 @22.9dBm WCDMA voice call 840 830 701 424 464 435 663 665 625 633 mA mA mA mA mA mA mA mA mA mA Table 30: EM06-J Current Consumption Parameter Description Conditions Typ. Unit IVBAT OFF state Power down AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) Sleep state WCDMA PF=128 (USB disconnected) WCDMA PF=512 (USB disconnected) LTE-FDD PF=32 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) Idle state LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=64 (USB connected) WCDMA data transfer
(GNSS OFF) WCDMA B1 HSDPA CH10700 @23.4dBm WCDMA B1 HSUPA CH10700 @22.2dBm 47 2.96 3.76 3.29 3.14 5.12 19.5 21.4 21.9 21.4 20.1 21.1 700 635 uA mA mA mA mA mA mA mA mA mA mA mA mA mA EM06_Hardware_Design 52 / 63 LTE-A Module Series EM06 Hardware Design WCDMA B3 HSDPA CH1338 @23.4dBm WCDMA B3 HSUPA CH1338 @22.7dBm WCDMA B6 HSDPA CH4175 @23.7dBm WCDMA B6 HSUPA CH4175 @23.5dBm WCDMA B8 HSDPA CH3012 @23.4dBm WCDMA B8 HSUPA CH3012 @22.4dBm WCDMA B19 HSDPA CH738 @23.4dBm WCDMA B19 HSUPA CH738 @22.4dBm LTE-FDD B1 CH300 @23.3dBm LTE-FDD B3 CH1575 @23.1dBm LTE-FDD B8 CH3625 @24.1dBm LTE-FDD B18 CH5925 @24.2dBm LTE data transfer
(GNSS OFF) LTE-FDD B19 CH6075 @23.4dBm LTE-FDD B26 CH8865 @23.4dBm LTE-FDD B28 CH27460 @23.5dBm LTE-TDD B41 CH40740 @24.2dBm LTE-FDD B1+B1 @22.5dBm LTE-FDD B1+B8 @22.6dBm LTE-FDD B1+B18 @22.6dBm LTE-FDD B1+B19 @23.1dBm LTE-FDD B1+B28 @23.2dBm LTE-FDD B3+B3 @23dBm LTE-FDD B3+B8 @23dBm LTE-FDD B3+B18 @22.3dBm LTE-FDD B3+B19 @22.4dBm LTE-FDD B3+B28 @22.4dBm LTE-TDD B41+B41 @23.6dBm 2CA data transfer 704 655 589 578 653 584 628 575 707 769 710 728 651 604 705 363 815 861 913 835 812 861 913 878 857 864 507 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EM06_Hardware_Design 53 / 63 LTE-A Module Series EM06 Hardware Design WCDMA voice call WCDMA B1 CH10700 @23.7dBm WCDMA B3 CH1338 @23.8dBm WCDMA B6 CH4175 @23.7dBm WCDMA B8 CH3012 @23.8dBm WCDMA B19 CH738 @23.9dBm 735 740 610 675 650 mA mA mA mA mA 6.6. RF Output Power The following table shows the RF output power of EM06 module. Table 31: RF Output Power Frequency Max. WCDMA bands 24dBm+1/-3dB LTE- FDD bands 23dBm2dB LTE-TDD bands 23dBm2dB 6.7. RF Receiving Sensitivity Min.
<-50dBm
<-40dBm
<-40dBm The following tables show conducted RF receiving sensitivity of EM06 module. Table 32: EM06-E Conducted RF Receiving Sensitivity Frequency Primary (Typ.) Diversity (Typ.) SIMO1) (Typ.) SIMO2) (Worst Case) WCDMA B1
-109.5dBm
-109dBm
-111dBm
-106.7dBm WCDMA B3
-109dBm
-109dBm
-111dBm
-103.7dBm WCDMA B5
-109dBm
-109dBm
-111dBm
-104.7dBm WCDMA B8
-109dBm
-109dBm
-111dBm
-103.7dBm LTE-FDD B1 (10M)
-97.5dBm
-97dBm
-100dBm
-96.3dBm EM06_Hardware_Design 54 / 63 LTE-A Module Series EM06 Hardware Design LTE-FDD B3 (10M)
-97dBm
-97dBm
-100dBm
-93.3dBm LTE-FDD B5 (10M)
-97dBm
-99dBm
-100.5dBm
-94.3dBm LTE-FDD B7 (10M)
-95.5dBm
-98dBm
-99.5dBm
-94.3dBm LTE-FDD B8 (10M)
-97.5dBm
-98dBm
-100.5dBm
-93.3dBm LTE-FDD B20 (10M)
-96.5dBm
-98.5dBm
-100.5dBm
-93.3dBm LTE-FDD B28 (10M)
-96.5dBm
-98.5dBm
-100.5dBm
-94.8dBm LTE-TDD B38 (10M)
-96dBm
-97.5dBm
-99dBm
-96.3dBm LTE-TDD B40 (10M)
-96dBm
-97.5dBm
-98.5dBm
-96.3dBm LTE-TDD B41 (10M)
-95.5dBm
-97.5dBm
-98.5dBm
-94.3dBm Table 33: EM06-J Conducted RF Receiving Sensitivity Frequency Primary (Typ.) Diversity (Typ.) SIMO1) (Typ.) SIMO2) (Worst Case) WCDMA B1
-109dBm
-109dBm
-111dBm
-106.7dBm WCDMA B3
-109dBm
-109dBm
-111dBm
-103.7dBm WCDMA B6
-108dBm
-109dBm
-111dBm
-106.7dBm WCDMA B8
-109dBm
-109dBm
-111dBm
-103.7dBm WCDMA B19
-109dBm
-109dBm
-111dBm
-106.7dBm LTE-FDD B1 (10M)
-97.5dBm
-97dBm
-100dBm
-96.3dBm LTE-FDD B3 (10M)
-97dBm
-97dBm
-100dBm
-93.3dBm LTE-FDD B8 (10M)
-97.5dBm
-99dBm
-100.5dBm
-93.3dBm LTE-FDD B18 (10M)
-96.5dBm
-98dBm
-100dBm
-96.3dBm LTE-FDD B19 (10M)
-96.5dBm
-98dBm
-99.5dBm
-96.3dBm LTE-FDD B26 (10M)
-96dBm
-97.5dBm
-98.5dBm
-96.3dBm LTE-FDD B28 (10M)
-96.5dBm
-98.5dBm
-100.5dBm
-94.8dBm LTE-TDD B41 (10M)
-95.5dBm
-97.5dBm
-98.5dBm
-94.3dBm EM06_Hardware_Design 55 / 63 LTE-A Module Series EM06 Hardware Design NOTES 1. 1) SIMO is a smart antenna technology that uses a single antenna at the transmitter side and multiple
(two for EM06) antennas at the receiver side, which can improve Rx performance. 2. 2) Per 3GPP specification. 6.8. ESD Characteristics The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module. The following table shows the module electrostatic discharge characteristics. Table 34: Electrostatic Discharge Characteristics (Temperature: 25C, Humidity: 40%) Tested Points Contact Discharge Air Discharge Unit VBAT, GND Antenna Interfaces 5 4 Other Interfaces 0.5 6.9. Thermal Dissipation 10 8 1 kV kV kV EM06 is designed to work over an extended temperature range. In order to achieve a maximum performance while working under extended temperatures or extreme conditions (such as with maximum power or data rate, etc.) for a long time, it is strongly recommended to add a thermal pad or other thermally conductive compounds between the module and the main PCB for thermal dissipation. The thermal dissipation area (i.e. the area for adding thermal pad) is show as below. The dimensions are measured in mm. EM06_Hardware_Design 56 / 63 LTE-A Module Series EM06 Hardware Design Figure 28: Thermal Dissipation Area on Bottom Side of Module (Top View) There are some other measures to enhance heat dissipation performance:
Add ground vias as many as possible on PCB. Maximize airflow over/around the module. Place the module away from other heating sources. Module mounting holes must be used to attach (ground) the device to the main PCB ground. It is NOT recommended to apply solder mask on the main PCB where the modules thermal dissipation area is located. Select an appropriate material, thickness and surface for the outer housing (i.e. the mechanical enclosure) of the application device that integrates the module so that it provides good thermal dissipation. Customers may also need active cooling to pull heat away from the module. If possible, add a heatsink on the top of the module. A thermal pad should be used between the heatsink and the module, and the heatsink should be designed with as many fins as possible to increase heat dissipation area. EM06_Hardware_Design 57 / 63 LTE-A Module Series EM06 Hardware Design 7 Mechanical Dimensions and Packaging This chapter mainly describes mechanical dimensions and packaging specifications of EM06 module. All dimensions are measured in mm, and the tolerances for dimensions without tolerance values are 0.05mm. 7.1. Mechanical Dimensions of the Module Figure 29: Mechanical Dimensions of EM06 (Unit: mm) EM06_Hardware_Design 58 / 63 LTE-A Module Series EM06 Hardware Design 7.2. Standard Dimensions of M.2 PCI Express The following figure shows the standard dimensions of M.2 PCI Express. Please refer to document [4]
for detailed A and B. Figure 30: Standard Dimensions of M.2 Type 3042-S3 (Unit: mm) According to M.2 nomenclature, EM06 is Type 3042-S3-B (30.0mm 42.0mm, max component height on the top is 1.5mm and single-sided, key ID is B). Figure 31: M.2 Nomenclature EM06_Hardware_Design 59 / 63 LTE-A Module Series EM06 Hardware Design 7.3. Design Effect Drawings of the Module Figure 32: Top View of the Module Figure 33: Bottom View of the Module NOTE These are design effect drawings of EM06 module. For more accurate pictures, please refer to the module that you get from Quectel. EM06_Hardware_Design 60 / 63 LTE-A Module Series EM06 Hardware Design 7.4. M.2 Connector EM06 adopts a standard PCI Express M.2 connector which compiles with the directives and standards listed in the document [4]. 7.5. Packaging EM06 modules are packaged in trays. Each tray contains 10 modules. The smallest package contains 100 modules. EM06_Hardware_Design 61 / 63 LTE-A Module Series EM06 Hardware Design 8 Appendix References Table 35: Related Documents SN Document Name Remark
[1]
Quectel_M.2_EVB_User_Guide M.2 EVB User Guide
[2]
Quectel_EP06&EG06&EM06_AT_Commands_Manual EP06, EG06 and EM06 AT Commands Manual
[3]
Quectel_EP06&EG06&EM06_GNSS_AT_Commands_ EP06, EG06 and EM06 GNSS AT Manual Commands Manual
[4]
PCI Express M.2 Specification PCI Express Specification Table 36: Terms and Abbreviations Abbreviation Description bps Bits Per Second DC-HSPA+
Dual-carrier High Speed Packet Access DFOTA Delta Firmware Upgrade Over The Air DL ESD FDD GLONASS GNSS GPS GSM HR Down Link Electrostatic Discharge Frequency Division Duplexing GLObalnaya Navigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System Global Navigation Satellite System Global Positioning System Global System for Mobile Communications Half Rate EM06_Hardware_Design 62 / 63 LTE-A Module Series EM06 Hardware Design HSPA HSUPA High Speed Packet Access High Speed Uplink Packet Access kbps LED LTE Mbps ME MIMO MLCC MMS MO MT PDU PPP RF Rx SAR SMS Tx UART UL URC Kilo Bits Per Second Light Emitting Diode Long Term Evolution Million Bits Per Second Mobile Equipment (Module) Multiple-Input Multiple-Output Multiplayer Ceramic Chip Capacitor Multimedia Messaging Service Mobile Originated Mobile Terminated Protocol Data Unit Point-to-Point Protocol Radio Frequency Receive Specific Absorption Rate Short Message Service Transmit Universal Asynchronous Receiver & Transmitter Up Link Unsolicited Result Code
(U)SIM WCDMA
(Universal) Subscriber Identification Module Wideband Code Division Multiple Access EM06_Hardware_Design 63 / 63 LTE-A Module Series EM06 Hardware Design 9 IC & FCC Requirement FCC Certification Requirements. According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device. And the following conditions must be met:
1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based timeaveraging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091. 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the users body and must not transmit simultaneously with any other antenna or transmitter. 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201906EM06A 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:
Operating Band WCDMA BAND II WCDMA BAND IV WCDMA BAND V LTE BAND 2 LTE BAND 4 LTE BAND 5 LTE BAND 7 LTE BAND 12 LTE BAND 13 LTE BAND 25 LTE BAND 26(814-824) LTE BAND 26(824-849) LTE BAND 30 LTE BAND 41 LTE BAND 66 FCC Max Antenna GaindBi IC Max Antenna GaindBi 9.00 6.00 10.42 9.00 6.00 10.41 9.00 9.70 10.16 9.00 10.36 10.41 0.00 9.00 6.00 9.00 6.00 9.26 9.00 6.00 9.25 9.00 8.76 9.09 9.00 NA 9.25 0.00 9.00 6.00 5. This module must not transmit simultaneously with any other antenna or transmitter 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines. For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093 If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna EM06_Hardware_Design 64 / 63 LTE-A Module Series EM06 Hardware Design configurations. For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:
A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph). For a host using a certified modular with a standard fixed label, if (1) the modules FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible;
then an additional permanent label referring to the enclosed module:Contains Transmitter Module FCC ID: XMR201906EM06A or Contains FCC ID: XMR201906EM06A must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID. The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the users authority to operate the equipment. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Suppliers Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements. Manual Information To the End User The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the users manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual. IC Statement IRSS-GEN
"This device complies with Industry Canadas licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device." or "Le prsent appareil est conforme aux CNR dIndustrie Canada applicables aux appareils radio exempts de licence. EM06_Hardware_Design 65 / 63 LTE-A Module Series EM06 Hardware Design Lexploitation est autorise aux deux conditions suivantes :
1) lappareil ne doit pas produire de brouillage; 2) lutilisateur de lappareil doit accepter tout brouillage radiolectrique subi, mme si le brouillage est susceptible den compromettre le fonctionnement."
Dclaration sur l'exposition aux rayonnements RF L'autre utilis pour l'metteur doit tre install pour fournir une distance de sparation d'au moins 20 cm de toutes les personnes et ne doit pas tre colocalis ou fonctionner conjointement avec une autre antenne ou un autre metteur. The host product shall be properly labeled to identify the modules within the host product. The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labeled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word Contains or similar wording expressing the same meaning, as follows:
Contains IC: 10224A-201906EM06A or where: 10224A-201906EM06A is the modules certification number. Le produit hte doit tre correctement tiquet pour identifier les modules dans le produit hte. L'tiquette de certification d'Innovation, Sciences et Dveloppement conomique Canada d'un module doit tre clairement visible en tout temps lorsqu'il est installdans le produit hte; sinon, le produit hte doit porter une tiquette indiquant le numro de certification d'Innovation, Sciences et Dveloppement conomique Canada pour le module, prcd du mot Contient ou d'un libell semblable exprimant la mme signification, comme suit:
"Contient IC: 10224A-201906EM06A " ou "o: 10224A-201906EM06A est le numro de certification du module". EM06_Hardware_Design 66 / 63
frequency | equipment class | purpose | ||
---|---|---|---|---|
1 | 2019-04-05 | 2506 ~ 2680 | PCB - PCS Licensed Transmitter | Original Equipment |
app s | Applicant Information | |||||
---|---|---|---|---|---|---|
1 | Effective |
2019-04-05
|
||||
1 | Applicant's complete, legal business name |
Quectel Wireless Solutions Company Limited
|
||||
1 | FCC Registration Number (FRN) |
0018988279
|
||||
1 | Physical Address |
Building 5, Shanghai Business Park PhaseIII
|
||||
1 |
Shanghai, N/A 200233
|
|||||
1 |
China
|
|||||
app s | TCB Information | |||||
1 | TCB Application Email Address |
t******@timcoengr.com
|
||||
1 | TCB Scope |
B1: Commercial mobile radio services equipment in the following 47 CFR Parts 20, 22 (cellular), 24,25 (below 3 GHz) & 27
|
||||
app s | FCC ID | |||||
1 | Grantee Code |
XMR
|
||||
1 | Equipment Product Code |
201906EM06A
|
||||
app s | Person at the applicant's address to receive grant or for contact | |||||
1 | Name |
J******** x****
|
||||
1 | Telephone Number |
+8602******** Extension:
|
||||
1 | Fax Number |
+8621********
|
||||
1 |
j******@quectel.com
|
|||||
app s | Technical Contact | |||||
n/a | ||||||
app s | Non Technical Contact | |||||
n/a | ||||||
app s | Confidentiality (long or short term) | |||||
1 | Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | Yes | ||||
1 | Long-Term Confidentiality Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | Yes | ||||
1 | If so, specify the short-term confidentiality release date (MM/DD/YYYY format) | 05/23/2019 | ||||
if no date is supplied, the release date will be set to 45 calendar days past the date of grant. | ||||||
app s | Cognitive Radio & Software Defined Radio, Class, etc | |||||
1 | Is this application for software defined/cognitive radio authorization? | No | ||||
1 | Equipment Class | PCB - PCS Licensed Transmitter | ||||
1 | Description of product as it is marketed: (NOTE: This text will appear below the equipment class on the grant) | LTE-A Cat6 Module | ||||
1 | Related OET KnowledgeDataBase Inquiry: Is there a KDB inquiry associated with this application? | No | ||||
1 | Modular Equipment Type | Single Modular Approval | ||||
1 | Purpose / Application is for | Original Equipment | ||||
1 | Composite Equipment: Is the equipment in this application a composite device subject to an additional equipment authorization? | No | ||||
1 | Related Equipment: Is the equipment in this application part of a system that operates with, or is marketed with, another device that requires an equipment authorization? | No | ||||
1 | Grant Comments | Single Modular Approval. Power listed is ERP for part 22 and part 27 below 1 GHz, EIRP for part 24 and part 27 above 1 GHz. Approval is limited to OEM installation only. Compliance of this device in all final host configurations is the responsibility of the Grantee. This device is to be used only for mobile and fixed applications. OEM integrators must be provided labeling requirements for finished products. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. Separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations. The module antenna(s) must be installed to meet the RF exposure compliance separation distance of 20 cm and any additional testing and authorization process as required. Co-location of this module with other transmitters that operate simultaneously are required to be evaluated using the FCC multi-transmitter procedures. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain, and cable loss must satisfy MPE categorical Exclusion Requirements of Part 2.1091. Users must be provided with instructions and transmitter operating conditions for satisfying RF exposure compliance. RF exposure compliance may need to be addressed at the time of licensing, as required by the responsible FCC bureau(s), including antenna co-location requirements of Part 1.1307(b)(3). This device supports: LTE of 1.4, 3, 5, 10, 15, and 20MHz bandwidth modes for LTE Band 2, 4,25 and 66; and LTE of 1.4 , 3, 5 and 10MHz bandwidth modes for LTE Band 5,12 and 26 (814-824MHz),LTE of 5, 10, 15 and 20MHz bandwidth modes for LTE Band 7 and 41; LTE of 5 and 10 MHz bandwidth modes for LTE Band 13 and 30; LTE of 1.4, 3, 5,10 and 15MHz bandwidth mode for LTE Band 26(824-849MHz). This device contains functions that are not operational in U.S. Territories. This filing is only applicable for U.S. operations. The maximum antenna gain including cable loss in a mobile-only exposure condition must not exceed: 9 dBi in WCDMA Band 2/LTE Band 2/7/25/41, 6dBi in WCDMA Band 4 /LTE Band 4/66, and 10.42 dBi in WCDMA Band 5, 10.41 dBi in LTE Band 5/26(824-849), 9.7 dBi in LTE Band 12, 10.16 dBi in LTE Band 13, 10.36 dBi in LTE Band 26(814-824), 0 dBi in LTE Band 30. | ||||
1 | Is there an equipment authorization waiver associated with this application? | No | ||||
1 | If there is an equipment authorization waiver associated with this application, has the associated waiver been approved and all information uploaded? | No | ||||
app s | Test Firm Name and Contact Information | |||||
1 | Firm Name |
SGS-CSTC Standards Technical Services Co., Ltd
|
||||
1 | Name |
K****** X********
|
||||
1 | Telephone Number |
+86 (********
|
||||
1 |
K******@sgs.com
|
|||||
Equipment Specifications | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
1 | 1 | 24E | 1852.4 | 1907.6 | 0.34 | 0.1 ppm | 4M17F9W | ||||||||||||||||||||||||||||||||||
1 | 2 | 27 | 1712.4 | 1752.6 | 0.342 | 0.1 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
1 | 3 | 22H | 826.4 | 846.6 | 0.264 | 0.1 ppm | 4M14F9W | ||||||||||||||||||||||||||||||||||
1 | 4 | 27 | 1860 | 1900 | 0.382 | 0.1 ppm | 18M0G7D | ||||||||||||||||||||||||||||||||||
1 | 5 | 22H | 1860 | 1900 | 0.31 | 0.1 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 6 | 24E | 1851.5 | 1908.5 | 0.311 | 0.1 ppm | 2M71W7D | ||||||||||||||||||||||||||||||||||
1 | 7 | 27 | 1720 | 1745 | 0.308 | 0.1 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 8 | 27 | 1720 | 1745 | 0.263 | 0.1 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 9 | 27 | 1715 | 1750 | 0.311 | 0.1 ppm | 8M93G7D | ||||||||||||||||||||||||||||||||||
1 | 1 | 22H | 829 | 844 | 0.231 | 0.1 ppm | 8M95G7D | ||||||||||||||||||||||||||||||||||
1 | 11 | 22H | 829 | 844 | 0.193 | 0.1 ppm | 8M93W7D | ||||||||||||||||||||||||||||||||||
1 | 12 | 27 | 2510 | 2560 | 0.378 | 0.1 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 13 | 27 | 2510 | 2560 | 0.361 | 0.1 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 14 | 27 | 2505 | 2565 | 0.38 | 0.1 ppm | 8M95G7D | ||||||||||||||||||||||||||||||||||
1 | 15 | 27 | 704 | 711 | 0.262 | 0.1 ppm | 8M97G7D | ||||||||||||||||||||||||||||||||||
1 | 16 | 27 | 704 | 711 | 0.242 | 0.1 ppm | 8M95W7D | ||||||||||||||||||||||||||||||||||
1 | 17 | 27 | 700.5 | 714.5 | 0.272 | 0.1 ppm | 2M69G7D | ||||||||||||||||||||||||||||||||||
1 | 18 | 27 | 782 | 782 | 0.251 | 0.1 ppm | 8M93G7D | ||||||||||||||||||||||||||||||||||
1 | 19 | 27 | 782 | 782 | 0.246 | 0.1 ppm | 8M91W7D | ||||||||||||||||||||||||||||||||||
1 | 2 | 27 | 779.5 | 784.5 | 0.262 | 0.1 ppm | 4M49G7D | ||||||||||||||||||||||||||||||||||
1 | 21 | 24E | 1860 | 1905 | 0.387 | 0.1 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 22 | 24E | 1860 | 1905 | 0.346 | 0.1 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 23 | 9 | 819 | 819 | 0.229 | 0.1 ppm | 8M91G7D | ||||||||||||||||||||||||||||||||||
1 | 24 | 9 | 819 | 819 | 0.17 | 0.1 ppm | 8M91W7D | ||||||||||||||||||||||||||||||||||
1 | 25 | 9 | 816.5 | 821.5 | 0.245 | 0.1 ppm | 4M48G7D | ||||||||||||||||||||||||||||||||||
1 | 26 | 9 | 815.5 | 822.5 | 0.2 | 0.1 ppm | 2M80W7D | ||||||||||||||||||||||||||||||||||
1 | 27 | 22H | 831.5 | 841.5 | 0.285 | 0.1 ppm | 13M5G7D | ||||||||||||||||||||||||||||||||||
1 | 28 | 22H | 831.5 | 841.5 | 0.21 | 0.1 ppm | 13M5W7D | ||||||||||||||||||||||||||||||||||
1 | 29 | 22H | 825.5 | 847.5 | 0.248 | 0.1 ppm | 2M69W7D | ||||||||||||||||||||||||||||||||||
1 | 3 | 27 | 2310 | 2310 | 0.226 | 0.1 ppm | 8M93G7D | ||||||||||||||||||||||||||||||||||
1 | 31 | 27 | 2310 | 2310 | 0.202 | 0.1 ppm | 8M93W7D | ||||||||||||||||||||||||||||||||||
1 | 32 | 27 | 2307.5 | 2312.5 | 0.207 | 0.1 ppm | 4M48W7D | ||||||||||||||||||||||||||||||||||
1 | 33 | 27 | 2506 | 2680 | 0.373 | 0.1 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 34 | 27 | 2506 | 2680 | 0.313 | 0.1 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 35 | 27 | 1720 | 1770 | 0.314 | 0.1 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 36 | 27 | 1720 | 1770 | 0.302 | 0.1 ppm | 17M9W7D |
some individual PII (Personally Identifiable Information) available on the public forms may be redacted, original source may include additional details
This product uses the FCC Data API but is not endorsed or certified by the FCC