all | frequencies |
|
|
|
exhibits | applications |
---|---|---|---|---|---|---|
manual | photos |
app s | submitted / available | |||||||
---|---|---|---|---|---|---|---|---|
1 2 |
|
Users Manual | Users Manual | 3.94 MiB | February 08 2018 / March 08 2018 | |||
1 2 |
|
Internal photos | Internal Photos | 2.12 MiB | March 08 2021 | |||
1 2 |
|
External photos | External Photos | 1.15 MiB | March 08 2021 | |||
1 2 |
|
Cover letter | Cover Letter(s) | 148.91 KiB | March 08 2021 | |||
1 2 |
|
Host label | ID Label/Location Info | 70.62 KiB | March 08 2021 | |||
1 2 |
|
SAR report part 1 | RF Exposure Info | 3.37 MiB | March 08 2021 | |||
1 2 |
|
SAR report part 2 | RF Exposure Info | 2.22 MiB | March 08 2021 | |||
1 2 |
|
Test report | Test Report | 3.25 MiB | March 08 2021 | |||
1 2 |
|
Test setup | Test Setup Photos | 189.11 KiB | March 08 2021 | |||
1 2 | Tune up | Parts List/Tune Up Info | March 08 2021 | confidential | ||||
1 2 | Cover Letter(s) | February 08 2018 / March 08 2018 | ||||||
1 2 | Cover Letter(s) | February 08 2018 / March 08 2018 | ||||||
1 2 | ID Label/Location Info | February 08 2018 / March 08 2018 | ||||||
1 2 | RF Exposure Info | February 08 2018 / March 08 2018 | ||||||
1 2 | Cover Letter(s) | February 08 2018 / March 08 2018 | ||||||
1 2 | Cover Letter(s) | February 08 2018 / March 08 2018 | ||||||
1 2 | Test Report | February 08 2018 / March 08 2018 | ||||||
1 2 | Test Report | February 08 2018 / March 08 2018 | ||||||
1 2 | Test Report | February 08 2018 / March 08 2018 | ||||||
1 2 | Test Report | February 08 2018 / March 08 2018 | ||||||
1 2 | Test Report | February 08 2018 / March 08 2018 | ||||||
1 2 | Test Report | February 08 2018 / March 08 2018 | ||||||
1 2 | Test Setup Photos | February 08 2018 / March 08 2018 | ||||||
1 2 | Cover Letter(s) | February 08 2018 / March 08 2018 |
1 2 | Users Manual | Users Manual | 3.94 MiB | February 08 2018 / March 08 2018 |
EC25 Hardware Design LTE Module Series Rev. EC25_Hardware_Design_V1.5 Date: 2018-04-20 Status: Released www.quectel.com LTE Module Series EC25 Hardware Design Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd. 7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@quectel.com Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm Or Email to: support@quectel.com GENERAL NOTES QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved. EC25_Hardware_Design 1 / 112 LTE Module Series EC25 Hardware Design About the Document History Revision Date Author Description 1.0 2016-04-01 Woody WU Initial 1. Updated EC25 series frequency bands in Table 1. 2. Updated transmitting power, supported maximum baud rate of main UART/internal protocols/USB drivers of USB interface, firmware upgrade and temperature range in Table 2. 3. Updated timing of turning on module in Figure 12. 4. Updated timing of turning off module in Figure 13. 5. Updated timing of resetting module in Figure 16. 6. Updated supported baud rates of main UART in Chapter 3.11. 7. Added notes for ADC interface in Chapter 3.13. 8. Updated GNSS performance in Table 21. 9. Updated operating frequencies of module in Table 23. 10. Added current consumption in Chapter 6.4. 11. Updated RF output power in Chapter 6.5. 12. Added RF receiving sensitivity in Chapter 6.6. 1. Added SGMII and WLAN interfaces in Table 2. 2. Updated function diagram in Figure 1. 3. Updated pin assignment (Top View) in Figure 2. 4. Added description of SGMII and WLAN interfaces in Table 4. 5. Added SGMII interface in Chapter 3.17. 6. Added WLAN interface in Chapter 3.18. 7. Added USB_BOOT interface in Chapter 3.19. 8. Added reference design of RF layout in Chapter 5.1.4. 9. Added note about SIMO in Chapter 6.6. 1. Updated function diagram in Figure 1. 2. Updated pin assignment (top view) in Figure 2. 1.1 2016-09-22 Lyndon LIU/
Frank WANG 1.2 2016-11-04 Lyndon LIU/
Michael ZHANG 1.3 2017-01-24 Lyndon LIU/
Frank WANG EC25_Hardware_Design 2 / 112 LTE Module Series EC25 Hardware Design 3. Added BT interface in Chapter 3.18.2. 4. Updated GNSS performance in Table 24. 5. Updated reference circuit of wireless connectivity interfaces with FC20 module in Figure 29. 6. Updated current consumption of EC25-E module in Table 33. 7. Updated EC25-A conducted RF receiving sensitivity in Table 38. 8. AddedEC25-J conducted RF receiving sensitivity in Table 40. 1. Updated functional diagram in Figure 1. 2. Updated frequency bands in Table 1. 3. Updated LTE, UMTS and GSM features in Table 2. 4. Updated description of pin 40/136/137/138. 5. Updated PWRKEY pulled down time to 500ms in Chapter 3.7.1 and reference circuit in Figure 10. 6. Updated reference circuit of (U)SIM interface in Figure 17&18. 7. Updated reference circuit of USB interface in Figure 19. 8. Updated PCM mode in Chapter 3.12. 9. Added SD card interface in Chapter 3.13. 10. Updated USB_BOOT reference circuit in Chapter 3.20. 11. Updated module operating frequencies in Table 26. 12. Updated antenna requirements in Table 30. 13. Updated EC25 series module current consumption in Chapter 6.4. 14. Updated EC25 series module conducted RF receiving sensitivity in Chapter 6.6. 15. Added thermal consideration description in Chapter 6.8. 16. Added dimension tolerance information in Chapter 7. 17. Added storage temperature range in Table 2 and Chapter 6.3. 18. Updated RF output power in Table 41. 19. Updated GPRS multi-slot classes in Table 53. 20. Updated storage information in Chapter 8.1. 1. Added information of EC25-AF in Table 1. 2. Updated module operating frequencies in Table 27. 3. Added current consumption of EC25-AF module in Table 40. 4. Changed GNSS current consumption of EC25 series module into Table 41. 1.4 2018-03-05 AnniceZHANG/
Lyndon LIU/
Frank WANG 1.5 2018-04-20 Kinsey ZHANG EC25_Hardware_Design 3 / 112 LTE Module Series EC25 Hardware Design 5. Added EC25-AF conducted RF receiving sensitivity in Table 50. EC25_Hardware_Design 4 / 112 LTE Module Series EC25 Hardware Design Contents About the Document ................................................................................................................................ 2 Contents .................................................................................................................................................... 5 Table Index ............................................................................................................................................... 8 Figure Index ............................................................................................................................................ 10 1 Introduction ..................................................................................................................................... 12 1.1. Safety Information ................................................................................................................. 13 2 Product Concept ............................................................................................................................. 14 2.1. General Description .............................................................................................................. 14 Key Features ......................................................................................................................... 15 2.2. 2.3. Functional Diagram ............................................................................................................... 18 Evaluation Board ................................................................................................................... 19 2.4. 3.6. 3 Application Interfaces ..................................................................................................................... 20 3.1. General Description .............................................................................................................. 20 Pin Assignment ..................................................................................................................... 21 3.2. 3.3. Pin Description ...................................................................................................................... 22 3.4. Operating Modes .................................................................................................................. 34 3.5. Power Saving ........................................................................................................................ 34 3.5.1. Sleep Mode.................................................................................................................. 34 3.5.1.1. UART Application .............................................................................................. 34 3.5.1.2. USB Application with USB Remote Wakeup Function ....................................... 35 3.5.1.3. USB Application with USB Suspend/Resume and RI Function.......................... 36 3.5.1.4. USB Application without USB Suspend Function .............................................. 37 3.5.2. Airplane Mode .............................................................................................................. 37 Power Supply ........................................................................................................................ 38 3.6.1. Power Supply Pins ....................................................................................................... 38 3.6.2. Decrease Voltage Drop ............................................................................................... 39 3.6.3. Reference Design for Power Supply ............................................................................ 40 3.6.4. Monitor the Power Supply ............................................................................................ 40 Turn on and off Scenarios ..................................................................................................... 40 3.7.1. Turn on Module Using the PWRKEY ........................................................................... 40 3.7.2. Turn off Module ............................................................................................................ 42 3.7.2.1. Turn off Module Using the PWRKEY Pin ........................................................... 42 3.7.2.2. Turn off Module Using AT Command ................................................................ 43 3.8. Reset the Module .................................................................................................................. 43 3.9.
(U)SIM Interface .................................................................................................................... 45 3.10. USB Interface ........................................................................................................................ 47 3.11. UART Interfaces ................................................................................................................... 49 3.12. PCM and I2C Interfaces ........................................................................................................ 51 3.13. SD Card Interface ................................................................................................................. 54 3.14. ADC Interfaces ...................................................................................................................... 56 3.7. EC25_Hardware_Design 5 / 112 LTE Module Series EC25 Hardware Design 3.15. Network Status Indication ..................................................................................................... 57 3.16. STATUS ................................................................................................................................ 58 3.17. Behaviors of RI ..................................................................................................................... 59 3.18. SGMII Interface ..................................................................................................................... 60 3.19. Wireless Connectivity Interfaces ........................................................................................... 62 3.19.1. WLAN Interface ........................................................................................................... 64 3.19.2. BT Interface* ................................................................................................................ 64 3.20. USB_BOOT Interface............................................................................................................ 65 4 GNSS Receiver ................................................................................................................................ 66 4.1. General Description .............................................................................................................. 66 4.2. GNSS Performance .............................................................................................................. 66 4.3. Layout Guidelines ................................................................................................................. 67 5 Antenna Interfaces .......................................................................................................................... 68 5.1. Main/Rx-diversity Antenna Interfaces.................................................................................... 68 5.1.1. Pin Definition ................................................................................................................ 68 5.1.2. Operating Frequency ................................................................................................... 68 5.1.3. Reference Design of RF Antenna Interface ................................................................. 70 5.1.4. Reference Design of RF Layout ................................................................................... 70 5.2. GNSS Antenna Interface ....................................................................................................... 72 Antenna Installation .............................................................................................................. 74 5.3. 5.3.1. Antenna Requirement .................................................................................................. 74 5.3.2. Recommended RF Connector for Antenna Installation ................................................ 75 6 Electrical, Reliability and Radio Characteristics .......................................................................... 77 Absolute Maximum Ratings .................................................................................................. 77 6.1. Power Supply Ratings ........................................................................................................... 78 6.2. 6.3. Operation and Storage Temperatures .................................................................................. 78 Current Consumption ............................................................................................................ 79 6.4. 6.5. RF Output Power .................................................................................................................. 90 RF Receiving Sensitivity ....................................................................................................... 91 6.6. Electrostatic Discharge ......................................................................................................... 95 6.7. 6.8. Thermal Consideration .......................................................................................................... 95 7 Mechanical Dimensions.................................................................................................................. 98 7.1. Mechanical Dimensions of the the Module ............................................................................ 98 7.2. Recommended Footprint ..................................................................................................... 100 Design Effect Drawings of the Module ................................................................................ 101 7.3. 8 Storage, Manufacturing and Packaging ...................................................................................... 102 8.1. Storage ............................................................................................................................... 102 8.2. Manufacturing and Soldering .............................................................................................. 103 8.3. Packaging ........................................................................................................................... 104 9 Appendix A References ................................................................................................................ 105 10 Appendix B GPRS Coding Schemes ........................................................................................... 109 EC25_Hardware_Design 6 / 112 LTE Module Series EC25 Hardware Design 11 Appendix C GPRS Multi-slot Classes .......................................................................................... 110 12 Appendix D EDGE Modulationand Coding Schemes ................................................................. 112 EC25_Hardware_Design 7 / 112 LTE Module Series EC25 Hardware Design Table Index TABLE 1: FREQUENCY BANDS OF EC25 SERIES MODULE ....................................................................... 14 TABLE 2: KEY FEATURES OF EC25 MODULE .............................................................................................. 15 TABLE 3: I/O PARAMETERS DEFINITION ...................................................................................................... 22 TABLE 4: PIN DESCRIPTION ........................................................................................................................... 22 TABLE 5: OVERVIEW OF OPERATING MODES ............................................................................................ 34 TABLE 6: VBAT AND GND PINS ...................................................................................................................... 38 TABLE 7: PIN DEFINITION OF PWRKEY ........................................................................................................ 41 TABLE 8: RESET_N PIN DESCRIPTION ......................................................................................................... 43 TABLE 9: PIN DEFINITION OF THE (U)SIM INTERFACE ............................................................................... 45 TABLE 10: PIN DESCRIPTION OF USB INTERFACE ..................................................................................... 47 TABLE 11: PIN DEFINITION OF MAIN UART INTERFACE ............................................................................ 49 TABLE 12: PIN DEFINITION OF DEBUG UART INTERFACE......................................................................... 49 TABLE 13: LOGIC LEVELS OF DIGITAL I/O ................................................................................................... 50 TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES ...................................................................... 52 TABLE 15: PIN DEFINITION OF SD CARD INTERFACE ................................................................................ 54 TABLE 16: PIN DEFINITION OF ADC INTERFACES ...................................................................................... 56 TABLE 17: CHARACTERISTIC OF ADC .......................................................................................................... 56 TABLE 18: PIN DEFINITION OF NETWORK CONNECTION STATUS/ACTIVITY INDICATOR .................... 57 TABLE 19: WORKING STATE OF THE NETWORK CONNECTION STATUS/ACTIVITY INDICATOR ......... 57 TABLE 20: PIN DEFINITION OF STATUS ....................................................................................................... 58 TABLE 21: BEHAVIOR OF RI ........................................................................................................................... 59 TABLE 22: PIN DEFINITION OF THE SGMII INTERFACE .............................................................................. 60 TABLE 23: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES ............................................... 62 TABLE 24: PIN DEFINITION OF USB_BOOT INTERFACE............................................................................. 65 TABLE 25: GNSS PERFORMANCE ................................................................................................................. 66 TABLE 26: PIN DEFINITION OF RF ANTENNA ............................................................................................... 68 TABLE 27: MODULE OPERATING FREQUENCIES ....................................................................................... 68 TABLE 28: PIN DEFINITION OF GNSS ANTENNA INTERFACE .................................................................... 72 TABLE 29: GNSS FREQUENCY ...................................................................................................................... 73 TABLE 30: ANTENNA REQUIREMENTS ......................................................................................................... 74 TABLE 31: ABSOLUTE MAXIMUM RATINGS ................................................................................................. 77 TABLE 32: THE MODULE POWER SUPPLY RATINGS .................................................................................. 78 TABLE 33: OPERATION AND STORAGE TEMPERATURES ......................................................................... 78 TABLE 34: EC25-E CURRENT CONSUMPTION ............................................................................................. 79 TABLE 35: EC25-A CURRENT CONSUMPTION ............................................................................................. 81 TABLE 36: EC25-V CURRENT CONSUMPTION ............................................................................................. 82 TABLE 37: EC25-J CURRENT CONSUMPTION ............................................................................................. 83 TABLE 38: EC25-AU CURRENT CONSUMPTION .......................................................................................... 84 TABLE 39: EC25-AUT CURRENT CONSUMPTION ........................................................................................ 87 TABLE 40: EC25-AF CURRENT CONSUMPTION ........................................................................................... 88 TABLE 41: GNSS CURRENT CONSUMPTION OF EC25 SERIES MODULE ................................................ 90 EC25_Hardware_Design 8 / 112 LTE Module Series EC25 Hardware Design TABLE 42: RF OUTPUT POWER ..................................................................................................................... 90 TABLE 43: EC25-E CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 91 TABLE 44: EC25-A CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 91 TABLE 45: EC25-V CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 92 TABLE 46: EC25-J CONDUCTED RF RECEIVING SENSITIVITY .................................................................. 92 TABLE 47: EC25-AU CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 93 TABLE 48: EC25-AUT CONDUCTED RF RECEIVING SENSITIVITY ............................................................. 93 TABLE 49: EC25-AUTL CONDUCTED RF RECEIVING SENSITIVITY ........................................................... 94 TABLE 50: EC25-AF CONDUCTED RF RECEIVING SENSITIVITY ............................................................... 94 TABLE 51: ELECTROSTATICS DISCHARGE CHARACTERISTICS .............................................................. 95 TABLE 52: RELATED DOCUMENTS ............................................................................................................. 105 TABLE 53: TERMS AND ABBREVIATIONS ................................................................................................... 105 TABLE 54: DESCRIPTION OF DIFFERENT CODING SCHEMES ................................................................ 109 TABLE 55: GPRS MULTI-SLOT CLASSES .................................................................................................... 110 TABLE 56: EDGE MODULATION AND CODING SCHEMES ........................................................................ 112 EC25_Hardware_Design 9 / 112 LTE Module Series EC25 Hardware Design Figure Index FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 19 FIGURE 2: PIN ASSIGNMENT (TOP VIEW) .................................................................................................... 21 FIGURE 3: SLEEP MODE APPLICATION VIA UART ...................................................................................... 35 FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP .................................................... 36 FIGURE 5: SLEEP MODE APPLICATION WITH RI ......................................................................................... 36 FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION ................................................ 37 FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION ..................................................... 39 FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY ........................................................................... 39 FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 40 FIGURE 10: TURN ON THE MODULE BY USING DRIVING CIRCUIT ........................................................... 41 FIGURE 11: TURN ON THE MODULE BY USING BUTTON ........................................................................... 41 FIGURE 12: TIMING OF TURNING ON MODULE ........................................................................................... 42 FIGURE 13: TIMING OF TURNING OFF MODULE ......................................................................................... 43 FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT ...................................... 44 FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON ...................................................... 44 FIGURE 16: TIMING OF RESETTING MODULE ............................................................................................. 44 FIGURE 17: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
................................................................................................................................................................... 46 FIGURE 18: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR 46 FIGURE 19: REFERENCE CIRCUIT OF USB APPLICATION ......................................................................... 48 FIGURE 20: REFERENCE CIRCUIT WITH TRANSLATOR CHIP ................................................................... 50 FIGURE 21: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT .............................................................. 51 FIGURE 22: PRIMARY MODE TIMING ............................................................................................................ 52 FIGURE 23: AUXILIARY MODE TIMING .......................................................................................................... 52 FIGURE 24: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC ................................... 53 FIGURE 25: REFERENCE CIRCUIT OF SD CARD ......................................................................................... 55 FIGURE 26: REFERENCE CIRCUIT OF THE NETWORK INDICATOR ......................................................... 58 FIGURE 27: REFERENCE CIRCUITS OF STATUS ........................................................................................ 59 FIGURE 28: SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION ............................................. 61 FIGURE 29: REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION ................ 61 FIGURE 30: REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH FC20 MODULE
................................................................................................................................................................... 63 FIGURE 31: REFERENCE CIRCUIT OF USB_BOOT INTERFACE ................................................................ 65 FIGURE 32: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE ............................................................ 70 FIGURE 33: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB ..................................................................... 71 FIGURE 34: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB ................................................. 71 FIGURE 35: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GROUND) .................................................................................................................................................. 71 FIGURE 36: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GROUND) .................................................................................................................................................. 72 FIGURE 37: REFERENCE CIRCUIT OF GNSS ANTENNA ............................................................................. 73 EC25_Hardware_Design 10 / 112 LTE Module Series EC25 Hardware Design FIGURE 38: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM) ............................................... 75 FIGURE 39: MECHANICALS OF U.FL-LP CONNECTORS ............................................................................. 75 FIGURE 40: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM) .......................................................... 76 FIGURE 41: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE) ................. 96 FIGURE 42: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BACKSIDE OF CUSTOMERS PCB)
................................................................................................................................................................... 96 FIGURE 43: MODULE TOP AND SIDE DIMENSIONS .................................................................................... 98 FIGURE 44: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW) ................................................................. 99 FIGURE 45: RECOMMENDED FOOTPRINT (TOP VIEW) ............................................................................ 100 FIGURE 46: TOP VIEW OF THE MODULE .................................................................................................... 101 FIGURE 47: BOTTOM VIEW OF THE MODULE ............................................................................................ 101 FIGURE 48: REFLOW SOLDERING THERMAL PROFILE ............................................................................ 103 FIGURE 49: TAPE AND REEL SPECIFICATIONS ........................................................................................ 104 EC25_Hardware_Design 11 / 112 LTE Module Series EC25 Hardware Design 1 Introduction This document defines the EC25 module and describes its air interface and hardware interface which are connected with customers applications. This document can help customers quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EC25 module. Associated with application note and user guide, customers can use EC25 module to design and set up mobile applications easily. EC25_Hardware_Design 12 / 112 LTE Module Series EC25 Hardware Design 1.1. Safety Information The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC25 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customers failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a hands free kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft. Switch off your wireless device when in hospitals,clinics or other health care facilities. These requests are designed to prevent possible interference with sensitive medical equipment. Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid (U)SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. EC25_Hardware_Design 13 / 112 LTE Module Series EC25 Hardware Design 2 Product Concept 2.1. General Description EC25 is a series of LTE-FDD/LTE-TDD/WCDMA/GSM wireless communication module with receive diversity. It provides data connectivity on LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA, EDGE and GPRS networks. It also provides GNSS1) and voice functionality2) for customers specific application. EC25 contains seven variants: EC25-E, EC25-A, EC25-V, EC25-J, EC25-AU, EC25-AUT, EC25-AF and EC25-AUTL. Customers can choose a dedicated type based on the region or operator. The following table shows the frequency bands of EC25 series module. Table 1: Frequency Bands of EC25 Series Module Modules2) LTE Bands WCDMA Bands GSM Bands Rx-
diversity GNSS1) EC25-E FDD: B1/B3/B5/B7/B8/B20 TDD: B38/B40/B41 B1/B5/B8 900/1800MHz EC25-A FDD: B2/B4/B12 B2/B4/B5 EC25-V FDD: B4/B13 N N N EC25-J EC25-AU3) FDD: B1/B3/B8/B18/B19/
B26 TDD: B41 FDD: B1/B2/B3/B4/B5/B7/
TDD: B40 B8/B28 B1/B6/B8/B19 N B1/B2/B5/B8 850/900/
1800/1900MHz EC25-AUT FDD: B1/B3//B5/B7/B28 B1/B5 EC25-AF FDD: B2/B4//B5/B12/B13/
B14/B66/B71 B2/B4/B5 EC25-AUTL FDD: B3/B7/B28 N N N N Y Y Y Y Y Y Y Y GPS, GLONASS, BeiDou/
Compass, Galileo, QZSS N EC25_Hardware_Design 14 / 112 LTE Module Series EC25 Hardware Design NOTES 1. 2. series module 1) GNSS function is optional. 2) EC25
(EC25-E/EC25-A/EC25-V/EC25-J/EC25-AU/EC25-AUT/EC25-AF/
EC25-AUTL) contains Telematics version and Data-only version. Telematics version supports voice and data functions, while Data-only version only supports data function. 3) B2 band on EC25-AU module does not support Rx-diversity. 3. 4. Y = Supported. N = Not supported. With a compact profile of 29.0mm 32.0mm 2.4mm, EC25 can meet almost all requirements for M2M applications such as automotive, metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc. EC25 is an SMD type module which can be embedded into applications through its 144-pin pads, including 80 LCC signal pads and 64 LGA pads. 2.2. Key Features The following table describes the detailed features of EC25 module. Table 2: Key Features of EC25 Module Feature Details Power Supply Transmitting Power LTE Features Supply voltage: 3.3V~4.3V Typical supply voltage: 3.8V Class 4 (33dBm2dB) for GSM850 Class 4 (33dBm2dB) for EGSM900 Class 1 (30dBm2dB) for DCS1800 Class 1 (30dBm2dB) for PCS1900 Class E2 (27dBm3dB) for GSM850 8-PSK Class E2 (27dBm3dB) for EGSM900 8-PSK Class E2 (26dBm3dB) for DCS1800 8-PSK Class E2 (26dBm3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm2dB) for LTE-FDD bands Class 3 (23dBm2dB) for LTE-TDD bands Support up to non-CA Cat 4 FDD and TDD Support 1.4MHz~20MHz RF bandwidth Support MIMO in DL direction LTE-FDD: Max 150Mbps (DL)/50Mbps (UL) EC25_Hardware_Design 15 / 112 LTE Module Series EC25 Hardware Design UMTS Features GSM Features Internet Protocol Features SMS LTE-TDD: Max 130Mbps (DL)/30Mbps (UL) Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA Support QPSK, 16-QAM and 64-QAM modulation DC-HSDPA: Max 42Mbps (DL) HSUPA: Max 5.76Mbps (UL) WCDMA: Max 384Kbps (DL)/384Kbps (UL) GPRS:
Support GPRS multi-slot class 33 (33 by default) Coding scheme: CS-1, CS-2, CS-3 and CS-4 Max 107Kbps (DL)/85.6Kbps (UL) EDGE:
Support EDGE multi-slot class 33 (33 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) Downlink coding schemes: CS 1-4 and MCS 1-9 Uplink coding schemes: CS 1-4 and MCS 1-9 Max 296Kbps (DL)/236.8Kbps (UL) Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/CMUX*/HTTPS*/SMTP*/
MMS*/FTPS*/SMTPS*/SSL*/FILE* protocols Support PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) protocols which are usually used for PPP connections Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default
(U)SIM Interface Support USIM/SIM card: 1.8V, 3.0V Audio Features PCM Interface USB Interface Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression Used for audio function with external codec Support 16-bit linear data format Support long frame synchronization and short frame synchronization Support master and slave modes, but must be the master in long frame synchronization Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA output, software debugging, firmware upgrade and voice over USB*
EC25_Hardware_Design 16 / 112 LTE Module Series EC25 Hardware Design Support USB serial drivers for: Windows 7/8/8.1/10, Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.x/7.x Main UART:
Used for AT command communication and data transmission Baud rates reach up to 921600bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART:
Used for Linux console and log output 115200bps baud rate UART Interface SD Card Interface Support SD 3.0 protocol SGMII Interface Wireless Connectivity Interfaces Support 10M/100M/1000M Ethernet work mode Support maximum 150Mbps (DL)/50Mbps (UL) for 4G network Support a low-power SDIO 3.0 interface for WLAN and UART/PCM interface for Bluetooth*
Rx-diversity Support LTE/WCDMA Rx-diversity GNSS Features AT Commands Network Indication Antenna Interfaces Physical Characteristics Temperature Range Gen8C Lite of Qualcomm Protocol: NMEA 0183 Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands Two pins including NET_MODE and NET_STATUS to indicate network connectivity status Including main antenna interface (ANT_MAIN), Rx-diversity antenna interface (ANT_DIV) and GNSS antenna interface (ANT_GNSS) Size: (29.00.15)mm (32.00.15)mm (2.40.2)mm Weight: approx. 4.9g Operation temperature range: -35C ~ +75C1) Extended temperature range: -40C ~ +85C2) Storage temperature range: -40C~ +90C Firmware Upgrade USB interface and DFOTA*
RoHS All hardware components are fully compliant with EU RoHS directive NOTES 1. 1) Within operation temperature range, the module is 3GPP compliant. 2. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again. 3. * means under development. EC25_Hardware_Design 17 / 112 LTE Module Series EC25 Hardware Design 2.3. Functional Diagram The following figure shows a block diagram of EC25 and illustrates the major functional parts. Power management Baseband DDR+NAND flash Radio frequency Peripheral interfaces EC25_Hardware_Design 18 / 112 LTE Module Series EC25 Hardware Design ANT_MAIN ANT_GNSS ANT_DIV PAM SAW Switch Duplex LNA APT PA Tx PRx SAW DRx Transceiver NAND DDR2 SDRAM IQ Control Baseband PMIC Control 19.2M XO VDD_EXT USB USIM PCM I2C UARTs SGMII WLAN BT*
GPIOs SD Figure 1: Functional Diagram VBAT_RF VBAT_BB PWRKEY RESET_N ADCs STATUS NOTE
* means under development. 2.4. Evaluation Board In order to help customers develop applications with EC25, Quectel supplies an evaluation board (EVB), USB to RS-232 converter cable, earphone, antenna and other peripherals to control or test the module. EC25_Hardware_Design 19 / 112 LTE Module Series EC25 Hardware Design 3 Application Interfaces
(U)SIM interface 3.1. General Description EC25 is equipped with 80 LCC pads plus 64 LGA pads that can be connected to cellular application platform. Sub-interfaces included in these pads are described in detail in the following chapters:
Power supply USB interface UART interfaces PCM and I2C interfaces SD card interface ADC interfaces Status indication SGMII interface Wireless connectivity interfaces USB_BOOT interface EC25_Hardware_Design 20 / 112 LTE Module Series EC25 Hardware Design 3.2. Pin Assignment The following figure shows the pin assignment of EC25 module. Figure 2: Pin Assignment (Top View) NOTES 1) means that these pins cannot be pulled up before startup. 2) PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset. 3) means these interface functions are only supported on Telematics version. 1. 2. 3. 4. Pads 37~40, 118, 127 and 129~139 are used for wireless connectivity interfaces, among which pads 118, 127 and 129~138 are WLAN function pins, and the rest are Bluetooth (BT) function pins. BT function is under development. 5. Pads 119~126 and 128 are used for SGMII interface. EC25_Hardware_Design 21 / 112 LTE Module Series EC25 Hardware Design 6. Pads 24~27 are multiplexing pins used for audio design on the EC25 module and BT function on the BT module. 7. Keep all RESERVED pins and unused pins unconnected. 8. GND pads 85~112 should be connected to ground in the design, and RESERVED pads 73~84 should not be designed in schematic and PCB decal, and these pins should be served as a keep out area.
* means under development. 9. 3.3. Pin Description The following tables show the pin definition of EC25 modules. Table 3: I/O Parameters Definition Type IO DI DO PI PO AI AO OD Description Bidirectional Digital input Digital output Power input Power output Analog input Analog output Open drain Table 4: Pin Description Power Supply Pin Name Pin No. I/O Description DC Characteristics Comment VBAT_BB 59, 60 PI Power supply for modules baseband part Vmax=4.3V Vmin=3.3V Vnorm=3.8V It must be able to provide sufficient current up to 0.8A. EC25_Hardware_Design 22 / 112 LTE Module Series EC25 Hardware Design VBAT_RF 57, 58 PI Power supply for modules RF part Vmax=4.3V Vmin=3.3V Vnorm=3.8V VDD_EXT 7 PO Provide 1.8V for external circuit Vnorm=1.8V IOmax=50mA It must be able to provide sufficient current up to 1.8A in a burst transmission. Power supply for external GPIOs pull-up circuits. 8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, 85~112 GND Turn on/off Ground Pin Name Pin No. I/O Description DC Characteristics Comment PWRKEY 21 DI Turn on/off the module RESET_N 20 DI Reset the module Status Indication VIHmax=2.1V VIHmin=1.3V VILmax=0.5V VIHmax=2.1V VIHmin=1.3V VILmax=0.5V The output voltage is 0.8V because of the diode drop in the Qualcomm chipset. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment STATUS 61 OD Indicate the module operating status The drive current should be less than 0.9mA. NET_MODE 5 DO Indicate the module network registration mode VOHmin=1.35V VOLmax=0.45V NET_ STATUS 6 DO Indicate the module network activity status VOHmin=1.35V VOLmax=0.45V USB Interface An external pull-up resistor is required. If unused, keep it open. 1.8V power domain. Cannot be pulled up before startup. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment USB_VBUS 71 PI USB detection Vmax=5.25V Vmin=3.0V Vnorm=5.0V Typical: 5.0V If unused, keep it open. EC25_Hardware_Design 23 / 112 LTE Module Series EC25 Hardware Design USB_DP 69 IO USB differential data bus (+) USB_DM 70 IO USB differential data bus (-)
(U)SIM Interface Compliant with USB 2.0 standard specification. Compliant with USB 2.0 standard specification. Require differential impedance of 90. If unused, keep it open. Require differential impedance of 90. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment USIM_GND 10 Specified ground for
(U)SIM card USIM_ PRESENCE 13 DI
(U)SIM card insertion detection USIM_VDD 14 PO Power supply for
(U)SIM card USIM_DATA 15 IO Data signal of
(U)SIM card USIM_CLK 16 DO Clock signal of
(U)SIM card VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V For 1.8V(U)SIM:
Vmax=1.9V Vmin=1.7V For 3.0V(U)SIM:
Vmax=3.05V Vmin=2.7V IOmax=50mA For 1.8V (U)SIM:
VILmax=0.6V VIHmin=1.2V VOLmax=0.45V VOHmin=1.35V For 3.0V (U)SIM:
VILmax=1.0V VIHmin=1.95V VOLmax=0.45V VOHmin=2.55V For 1.8V (U)SIM:
VOLmax=0.45V VOHmin=1.35V For 3.0V (U)SIM:
VOLmax=0.45V VOHmin=2.55V 1.8V power domain. If unused, keep it open. Either 1.8V or 3.0V is supported by the module automatically. EC25_Hardware_Design 24 / 112 LTE Module Series EC25 Hardware Design USIM_RST 17 DO Reset signal of
(U)SIM card For 1.8V (U)SIM:
VOLmax=0.45V VOHmin=1.35V For 3.0V (U)SIM:
VOLmax=0.45V VOHmin=2.55V Main UART Interface Pin Name Pin No. I/O Description DC Characteristics Comment RI DCD CTS 62 63 64 DO Ring indicator DO Data carrier detection DO Clear to send RTS 65 DI Request to send DTR 66 DI Data terminal ready, sleep mode control TXD 67 DO Transmit data RXD 68 DI Receive data Debug UART Interface VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. Pulled up by default. Low level wakes up the module. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment DBG_TXD 12 DO Transmit data VOLmax=0.45V VOHmin=1.35V DBG_RXD 11 DI Receive data VILmin=-0.3V 1.8V power domain. If unused, keep it open. 1.8V power domain. EC25_Hardware_Design 25 / 112 LTE Module Series EC25 Hardware Design VILmax=0.6V VIHmin=1.2V VIHmax=2.0V If unused, keep it open. ADC Interface Pin Name Pin No. I/O Description DC Characteristics Comment ADC0 ADC1 45 44 PCM Interface AI AI General purpose analog to digital converter General purpose analog to digital converter Voltage range:
0.3V to VBAT_BB If unused, keep it open. Voltage range:
0.3V to VBAT_BB If unused, keep it open. Pin Name Pin No. I/O Description PCM_IN 24 DI PCM data input DC Characteristics Comment VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep open. it PCM_OUT 25 DO PCM data output PCM_SYNC 26 IO PCM data frame synchronization signal PCM_CLK 27 IO PCM clock VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. 1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open. I2C Interface Pin Name Pin No. I/O Description DC Characteristics Comment I2C_SCL 41 OD I2C serial clock Used for external codec. External pull-up resistor is required. 1.8V only. If unused, keep it open. EC25_Hardware_Design 26 / 112 LTE Module Series EC25 Hardware Design I2C_SDA 42 OD I2C serial dataUsed for external codec. SD Card Interface External pull-up resistor is required. 1.8V only. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment SDC2_ DATA3 28 IO SD card SDIO bus DATA3 SDC2_ DATA2 29 IO SD card SDIO bus DATA2 SDC2_ DATA1 30 IO SD card SDIO bus DATA1 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported EC25_Hardware_Design 27 / 112 LTE Module Series EC25 Hardware Design VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V 1.8V signaling:
VOLmax=0.45V VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax=2.0V 3.0V signaling:
VOLmax=0.38V VOHmin=2.01V VILmin=-0.3V level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDC2_ DATA0 31 IO SD card SDIO bus DATA0 SDC2_CLK 32 DO SD card SDIO bus clock SDC2_CMD 33 IO SD card SDIO bus command EC25_Hardware_Design 28 / 112 LTE Module Series EC25 Hardware Design SD_INS_ DET 23 DI SD card insertion detect VILmax=0.76V VIHmin=1.72V VIHmax=3.34V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VDD_SDIO 34 PO SD card SDIO bus pull-up power IOmax=50mA 1.8V power domain. If unused, keep it open. 1.8V/2.85V configurable. Cannot be used for SD card power. If unused, keep it open. SGMII Interface Pin Name Pin No. I/O Description EPHY_RST_ N 119 DO Ethernet PHY reset EPHY_INT_N 120 DI Ethernet PHY interrupt SGMII_ MDATA 121 IO SGMII MDIO
(Management Data Input/Output) data SGMII_ MCLK 122 DO SGMII MDIO
(Management Data Input/Output) clock 1.8V/2.85V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. DC Characteristics Comment For 1.8V:
VOLmax=0.45V VOHmin=1.4V For 2.85V:
VOLmax=0.35V VOHmin=2.14V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V For 1.8V:
VOLmax=0.45V VOHmin=1.4V VILmax=0.58V VIHmin=1.27V For 2.85V:
VOLmax=0.35V VOHmin=2.14V VILmax=0.71V VIHmin=1.78V For 1.8V:
VOLmax=0.45V VOHmin=1.4V For 2.85V:
VOLmax=0.35V VOHmin=2.14V 1.8V/2.85V power domain. If unused, keep it open. 1.8V/2.85V power domain. If unused, keep it open. EC25_Hardware_Design 29 / 112 LTE Module Series EC25 Hardware Design USIM2_VDD 128 PO SGMII MDIO pull-up power source SGMII_TX_M 123 AO SGMII transmission
- minus SGMII_TX_P 124 AO SGMII transmission
- plus SGMII_RX_P 125 AI SGMII receiving
- plus SGMII_RX_M 126 AI SGMII receiving
-minus Wireless Connectivity Interfaces for Configurable power source. 1.8V/2.85V power domain. External pull-up SGMII MDIO pins. If unused, keep it open. Connect with a 0.1uF capacitor, close to the PHY side. If unused, keep it open. Connect with a 0.1uF capacitor, close to the PHY side. If unused, keep it open. Connect with a 0.1uF capacitor, close to EC25 module. If unused, keep it open. Connect with a 0.1uF capacitor, close to EC25 module. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment SDC1_ DATA3 129 IO WLAN SDIO data bus D3 SDC1_ DATA2 130 IO WLAN SDIO data bus D2 VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. EC25_Hardware_Design 30 / 112 LTE Module Series EC25 Hardware Design SDC1_ DATA1 131 IO WLAN SDIO data bus D1 SDC1_ DATA0 132 IO WLAN SDIO data bus D0 SDC1_CLK 133 DO WLAN SDIO bus clock VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V VOHmin=1.35V SDC1_CMD 134 DO WLAN SDIO bus command VOLmax=0.45V VOHmin=1.35V PM_ENABLE 127 DO WAKE_ON_ WIRELESS 135 DI WLAN_EN 136 DO External power control VOLmax=0.45V VOHmin=1.35V Wake up the host
(EC25 module) by FC20 module VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V WLAN function control via FC20 module VOLmax=0.45V VOHmin=1.35V COEX_UART _RX 137 DI LTE/WLAN&BT coexistence signal VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V COEX_UART _TX 138 DO LTE/WLAN&BT coexistence signal VOLmax=0.45V VOHmin=1.35V WLAN_SLP_ CLK 118 DO WLAN sleep clock 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. Active low. If unused, keep it open. 1.8V power domain. Active high. Cannot be pulled up before startup. If unused, keep it open. 1.8V power domain. Cannot be pulled up before startup. If unused, keep it open. 1.8V power domain. Cannot be pulled up before startup. If unused, keep it open. If unused, keep it open. EC25_Hardware_Design 31 / 112 LTE Module Series EC25 Hardware Design BT_RTS*
37 DI BT UART request to send VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V BT_TXD*
38 DO BT UART transmit data VOLmax=0.45V VOHmin=1.35V BT_RXD*
39 DI BT UART receive data VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V BT_CTS*
40 DO BT UART clear to send VOLmax=0.45V VOHmin=1.35V BT_EN*
139 DO BT function control via the BT module VOLmax=0.45V VOHmin=1.35V RF Interface 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. Cannot be pulled up before startup. If unused, keep it open. 1.8V power domain. If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment ANT_DIV 35 AI Diversity antenna pad ANT_MAIN 49 IO Main antenna pad ANT_GNSS 47 AI GNSS antenna pad GPIO Pins 50 impedance If unused, keep it open. 50 impedance 50 impedance If unused, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment WAKEUP_IN 1 DI Sleep mode control W_DISABLE# 4 DI Airplane mode control VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V 1.8V power domain. Cannot be pulled up before startup. Low level wakes up the module. If unused, keep it open. 1.8V power domain. Pull-up by default. At low voltage level, EC25_Hardware_Design 32 / 112 LTE Module Series EC25 Hardware Design VIHmax=2.0V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V module can enter into airplane mode. If unused, keep it open. 1.8V power domain. If unused, keep it open. AP_READY 2 DI USB_BOOT Interface Application processor sleep state detection Pin Name Pin No. I/O Description DC Characteristics Comment Force the module to enter into emergency download mode VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V 1.8V power domain. Cannot be pulled up before startup. It is recommended to reserve test point. USB_BOOT 115 DI RESERVED Pins Pin Name Pin No. I/O Description DC Characteristics Comment 3, 18, 43, 55, 73~84, 113, 114, 116, 117, 140-144. RESERVED NOTES Reserved Keep these pins unconnected. 1. * means under development. 2. Pads 24~27 are multiplexing pins used for audio design on the EC25 module and BT function on the BT module. EC25_Hardware_Design 33 / 112 LTE Module Series EC25 Hardware Design 3.4. Operating Modes The table below briefly summarizes the various operating modes referred in the following chapters. Table 5: Overview of Operating Modes Mode Details Idle Talk/Data Software is active. The module has registered on the network, and it is ready to send and receive data. Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate. AT+CFUN command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid. AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid. In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally. In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied. Normal Operation Minimum Functionality Mode Airplane Mode Sleep Mode Power Down Mode 3.5. Power Saving 3.5.1. Sleep Mode EC25 is able to reduce its current consumption to a minimum value during the sleep mode. The following section describes power saving procedures of EC25 module. 3.5.1.1. UART Application If the host communicates with module via UART interface, the following preconditions can let the module enter into sleep mode. Execute AT+QSCLK=1 command to enable sleep mode. Drive DTR to high level. EC25_Hardware_Design 34 / 112 LTE Module Series EC25 Hardware Design The following figure shows the connection between the module and the host. Figure 3: Sleep Mode Application via UART Driving the host DTR to low level will wake up the module. When EC25 has a URC to report, RI signal will wake up the host. Please refer to Chapter 3.17 for details about RI behaviors. AP_READY will detect the sleep state of the host (can be configured to high level or low level detection). Please refer to AT+QCFG="apready"* command for details. NOTE
* means under development. 3.5.1.2. USB Application with USB Remote Wakeup Function If the host supports USB suspend/resume and remote wakeup function, the following three preconditions must be met to let the module enter into the sleep mode. Execute AT+QSCLK=1 command to enable sleep mode. Ensure the DTR is held at high level or keep it open. The hosts USB bus, which is connected with the modules USB interface, enters into suspended state. EC25_Hardware_Design 35 / 112 LTE Module Series EC25 Hardware Design The following figure shows the connection between the module and the host. Figure 4: Sleep Mode Application with USB Remote Wakeup Sending data to EC25 through USB will wake up the module. When EC25 has a URC to report, the module will send remote wake-up signals via USB bus so as to wake up the host. 3.5.1.3. USB Application with USB Suspend/Resume and RI Function If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host. There are three preconditions to let the module enter into the sleep mode. Execute AT+QSCLK=1 command to enable the sleep mode. Ensure the DTR is held at high level or keep it open. The hosts USB bus, which is connected with the modules USB interface, enters into suspended state. The following figure shows the connection between the module and the host. Figure 5: Sleep Mode Application with RI EC25_Hardware_Design 36 / 112 LTE Module Series EC25 Hardware Design Sending data to EC25 through USB will wake up the module. When EC25 has a URC to report, RI signal will wake up the host. 3.5.1.4. USB Application without USB Suspend Function If the host does not support USB suspend function, USB_VBUS should be disconnected via an additional control circuit to let the module enter into sleep mode. Execute AT+QSCLK=1 command to enable sleep mode. Ensure the DTR is held at high level or keep it open. Disconnect USB_VBUS. The following figure shows the connection between the module and the host. Figure 6: Sleep Mode Application without Suspend Function Switching on the power switch to supply power to USB_VBUS will wake up the module. NOTE Please pay attention to the level match shown in dotted line between the module and the host. For more details about EC25 power management application, please refer to document [1]. 3.5.2. Airplane Mode When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways. EC25_Hardware_Design 37 / 112 LTE Module Series EC25 Hardware Design Hardware:
The W_DISABLE# pin is pulled up by default; driving it to low level will let the module enter into airplane mode. Software:
AT+CFUN command provides the choice of the functionality level through setting <fun> into 0, 1 or 4. AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled. AT+CFUN=1: Full functionality mode (by default). AT+CFUN=4: Airplane mode. RF function is disabled. NOTES 1. The W_DISABLE# control function is disabled in firmware by default. It can be enabled by AT+QCFG="airplanecontrol" command, and this command is under development. 2. The execution of AT+CFUN command will not affect GNSS function. 3.6. Power Supply 3.6.1. Power Supply Pins EC25 provides four VBAT pins to connect with the external power supply, and there are two separate voltage domains for VBAT. Two VBAT_RF pins for modules RF part Two VBAT_BB pins for modules baseband part The following table shows the details of VBAT pins and ground pins. Table 6: VBAT and GND Pins Pin Name Pin No. Description Min. Typ. Max. Unit VBAT_RF 57, 58 VBAT_BB 59, 60 GND 8, 9, 19, 22, 36, 46, 48, 50~54, 56, 72, 85~112 Power supply for modules RF part Power supply for modules baseband part 3.3 3.3 3.8 3.8 4.3 4.3 Ground
-
0
-
V V V EC25_Hardware_Design 38 / 112 LTE Module Series EC25 Hardware Design 3.6.2. Decrease Voltage Drop The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks. Figure 7: Power Supply Limits during Burst Transmission To decrease voltage drop, a bypass capacitor of about 100F with low ESR (ESR=0.7) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT_BB/VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm; and the width of VBAT_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be. In addition, in order to get a stable power source, it is suggested that a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 0.5W should be used. The following figure shows the star structure of the power supply. Figure 8: Star Structure of the Power Supply EC25_Hardware_Design 39 / 112 LTE Module Series EC25 Hardware Design 3.6.3. Reference Design for Power Supply Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply. The following figure shows a reference design for +5V input power source. The typical output of the power supplyis about 3.8V and the maximum load current is 3A. Figure 9: Reference Circuit of Power Supply NOTE In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shutdown by PWRKEY or AT command, then the power supply can be cut off. 3.6.4. Monitor the Power Supply AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to document [2]. 3.7. Turn on and off Scenarios 3.7.1. Turn on Module Using the PWRKEY The following table shows the pin definition of PWRKEY. EC25_Hardware_Design 40 / 112 LTE Module Series EC25 Hardware Design Table 7: Pin Definition of PWRKEY Pin Name Pin No. I/O Description Comment PWRKEY 21 DI Turn on/off the module The output voltage is 0.8V because of the diode drop in the Qualcomm chipset. When EC25 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 500ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure. 500ms Turn on pulse 4.7K PWRKEY 10nF 47K Figure 10: Turn on the Module by Using Driving Circuit The other way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure. Figure 11: Turn on the Module by Using Button EC25_Hardware_Design 41 / 112 LTE Module Series EC25 Hardware Design The turn on scenario is illustrated in the following figure. Figure 12: Timing of Turning on Module NOTE Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them should be no no less than 30ms. 3.7.2. Turn off Module The following procedures can be used to turn off the module:
Normal power down procedure: Turn off the module using the PWRKEY pin. Normal power down procedure: Turn off the module using AT+QPOWD command. 3.7.2.1. Turn off Module Using the PWRKEY Pin Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure. EC25_Hardware_Design 42 / 112 LTE Module Series EC25 Hardware Design Figure 13: Timing of Turning off Module 3.7.2.2. Turn off Module Using AT Command It is also a safe way to use AT+QPOWD command to turn off the module, which is similar to turning off the module via PWRKEY pin. Please refer to document [2] for details about AT+QPOWD command. NOTES 1. Inorder to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, then the power supply can be cut off. 2. When turn off module with AT command, please keep PWRKEY at high level after the execution of power-off command. Otherwise the module will be turned on again after successfully turn-off. 3.8. Reset the Module The RESET_N pin can be used to reset the module. The module can be reset by driving RESET_N to a low level voltage for time between 150ms and 460ms. Table 8: RESET_N Pin Description Pin Name Pin No. RESET_N 20 I/O DI Description Comment Reset the module 1.8V power domain EC25_Hardware_Design 43 / 112 LTE Module Series EC25 Hardware Design The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N. Figure 14: Reference Circuit of RESET_N by Using Driving Circuit Figure 15: Reference Circuit of RESET_N by Using Button The reset scenario is illustrated inthe following figure. Figure 16: Timing of Resetting Module EC25_Hardware_Design 44 / 112 LTE Module Series EC25 Hardware Design NOTES 1. Use RESET_N only when turning off the module by AT+QPOWD command and PWRKEY pin failed. 2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins. 3.9. (U)SIM Interface The(U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards are supported. Table 9: Pin Definition of the (U)SIM Interface Pin Name Pin No. I/O Description Comment USIM_VDD 14 PO Power supply for (U)SIM card USIM_DATA 15 USIM_CLK USIM_RST USIM_ PRESENCE USIM_GND 16 17 13 10 IO DO DO Data signal of (U)SIM card Clock signal of (U)SIM card Reset signal of (U)SIM card DI
(U)SIM card insertion detection Specified ground for (U)SIM card Either 1.8V or 3.0V is supported by the module automatically. EC25 supports (U)SIM card hot-plug via the USIM_PRESENCE pin. The function supports low level and high level detections, and it is disabled by default. Please refer to document [2] for more details about AT+QSIMDET command. EC25_Hardware_Design 45 / 112 LTE Module Series EC25 Hardware Design The following figure shows a reference design for (U)SIM interface with an 8-pin (U)SIM card connector. Figure 17: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector If (U)SIM card detection function is not needed, please keep USIM_PRESENCE unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure. Figure 18: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector In order to enhance the reliability and availability of the (U)SIM card in customers applications, please follow the criteria below in (U)SIM circuit design:
EC25_Hardware_Design 46 / 112 LTE Module Series EC25 Hardware Design Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length as less than 200mm as possible. Keep (U)SIM card signals away from RF and VBAT traces. Assure the ground between the module and the (U)SIM card connector short and wide. Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential. Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1uF, and place it as close to (U)SIM card connector as possible. If the ground is complete on customers PCB, USIM_GND can be connected to PCB ground directly. To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not be more than 15pF. The 0 resistors should be added in series between the module and the (U)SIM card to facilitate debugging. The 33pF capacitors are used for filtering interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the
(U)SIM card connector. The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and it should be placed close to the (U)SIM card connector. 3.10. USB Interface EC25 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB interface. Table 10: Pin Description of USB Interface Pin Name Pin No. I/O Description USB_DP USB_DM 69 70 USB_VBUS 71 GND 72 IO IO PI Comment Require differential impedance of 90 Require differential impedance of 90 USB differential data bus (+) USB differential data bus (-) USB connection detection Typical 5.0V Ground For more details about the USB 2.0 specifications, please visit http://www.usb.org/home. EC25_Hardware_Design 47 / 112 LTE Module Series EC25 Hardware Design The USB interface is recommended to be reserved for firmware upgrade in customers designs. The following figure shows a reference circuit of USB interface. Figure 19: Reference Circuit of USB Application A common mode choke L1 is recommended to be added in series between the module and customers MCU in order to suppress EMI spurious transmission. Meanwhile, the 0 resistors (R3 and R4) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible. The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification. It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90. Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides. Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF. Keep the ESD protection components to the USB connector as close as possible. NOTES 1. EC25 module can only be used as a slave device. 2.
* means under development. EC25_Hardware_Design 48 / 112 LTE Module Series EC25 Hardware Design 3.11. UART Interfaces The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features. The main UART interface supports 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps and 921600bps baud rates, and the default is 115200bps. This interface is used for data transmission and AT command communication. The debug UART interface supports 115200bps baud rate. It is used for Linux console and log output. The following tables show the pin definition of the UART interfaces. Table 11: Pin Definition of Main UART Interface Pin Name Pin No. RI DCD CTS RTS DTR TXD RXD 62 63 64 65 66 67 68 I/O DO DO DO DI DI DO DI Comment Description Ring indicator Data carrier detection Clear to send Request to send 1.8V power domain Data terminal ready Transmit data Receive data Table 12: Pin Definition of Debug UART Interface Pin Name Pin No. DBG_TXD DBG_RXD 12 11 I/O DO DI Description Transmit data Receive data Comment 1.8V power domain EC25_Hardware_Design 49 / 112 LTE Module Series EC25 Hardware Design The logic levels are described in the following table. Table 13: Logic Levels of Digital I/O Parameter VIL VIH VOL VOH Min.
-0.3 1.2 0 1.35 Max. 0.6 2.0 0.45 1.8 Unit V V V V The module provides 1.8V UART interface. A level translator should be used if customers application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by Texas Instruments is recommended. The following figure shows a reference design. Figure 20: Reference Circuit with Translator Chip Please visit http://www.ti.com for more information. Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to the design of solid line section, in terms of both modules input and output circuit designs, but please pay attention to the direction of connection. EC25_Hardware_Design 50 / 112 LTE Module Series EC25 Hardware Design Figure 21: Reference Circuit with Transistor Circuit NOTE Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps. 3.12. PCM and I2C Interfaces EC25 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes and one I2C interface:
Primary mode (short frame synchronization, works as both master and slave) Auxiliary mode (long frame synchronization, works as master only) In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz PCM_CLK at 16kHz PCM_SYNC. In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC. EC25 supports 16-bit linear data format. The following figures show the primary modes timing relationship with 8KHz PCM_SYNC and 2048KHz PCM_CLK, as well as the auxiliary modes timing relationship with 8KHz PCM_SYNC and 256KHz PCM_CLK. EC25_Hardware_Design 51 / 112 LTE Module Series EC25 Hardware Design Figure 22: Primary Mode Timing Figure 23: Auxiliary Mode Timing The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design. Table 14: Pin Definition of PCM and I2C Interfaces Pin Name Pin No. I/O Description Comment PCM_IN 24 DI PCM data input 1.8V power domain EC25_Hardware_Design 52 / 112 LTE Module Series EC25 Hardware Design PCM_OUT PCM_SYNC PCM_CLK I2C_SCL I2C_SDA 25 26 27 41 42 DO IO IO OD OD PCM data output 1.8V power domain PCM data frame synchronization signal 1.8V power domain PCM data bit clock 1.8V power domain I2C serial clock Require external pull-up to 1.8V I2C serial data Require external pull-up to 1.8V Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048KHz PCM_CLK and 8KHz PCM_SYNC. Please refer to document [2] for more details about AT+QDAI command. The following figure shows a reference design of PCM interface with external codec IC. Figure 24: Reference Circuit of PCM Application with Audio Codec NOTES 1. It is recommended to reserve an RC (R=22, C=22pF) circuits on the PCM lines, especially for PCM_CLK. 2. EC25 works as a master device pertaining to I2C interface. EC25_Hardware_Design 53 / 112 LTE Module Series EC25 Hardware Design 3.13. SD Card Interface EC25 supports SDIO 3.0 interface for SD card. The following table shows the pin definition of SD card interface. Table 15: Pin Definition of SD Card Interface Pin Name Pin No. I/O Description Comment SDC2_DATA3 28 IO SD card SDIO bus DATA3 SDC2_DATA2 29 IO SD card SDIO bus DATA2 SDC2_DATA1 30 IO SD card SDIO bus DATA1 SDC2_DATA0 31 IO SD card SDIO bus DATA0 SDC2_CLK 32 DO SD card SDIO bus clock SDC2_CMD 33 IO SD card SDIO bus command SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. SDIO signal level can be selected according to SD EC25_Hardware_Design 54 / 112 LTE Module Series EC25 Hardware Design VDD_SDIO 34 PO SD card SDIO bus pull up power SD_INS_DET 23 DI SD card insertion detection The following figure shows a reference design of SD card. card supported level, please refer to SD 3.0 protocol for more details. If unused, keep it open. 1.8V/2.85V configurable. Cannot be used for SD card power. If unused, keep it open. 1.8V power domain. If unused, keep it open. Figure 25: Reference Circuit of SD card In SD card interface design, in order to ensure good communication performance with SD card, the following design principles should be complied with:
SD_INS_DET must be connected. The voltage range of SD card power supply VDD_3V is 2.7V~3.6V and a sufficient current up to 0.8A should be provided. As the maximum output current of VDD_SDIO is 50mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card. To avoid jitter of bus, resistors R7~R11 are needed to pull up the SDIO to VDD_SDIO. Value of these resistors is among 10K~100K and the recommended value is 100K. VDD_SDIO should be used as the pull-up power. In order to adjust signal quality, it is recommended to add 0 resistors R1~R6 in series between the module and the SD card. The bypass capacitors C1~C6 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module. In order to offer good ESD protection, it is recommended to add a TVS diode on SD card pins near the SD card connector with junction capacitance less than 15pF. EC25_Hardware_Design 55 / 112 LTE Module Series EC25 Hardware Design Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc. It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace is 50 (10%). Make sure the adjacent trace spacing is two times of the trace width and the load capacitance of SDIO bus should be less than 15pF. It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm and the total routing length less than 50mm. The total trace length inside the module is 27mm, so the exterior total trace length should be less than 23mm. 3.14. ADC Interfaces The module provides two analog-to-digital converter (ADC) interfaces. AT+QADC=0 command can be used to read the voltage value on ADC0 pin. AT+QADC=1 command can be used to read the voltage value on ADC1 pin. For more details about these AT commands, please refer to document [2]. In order to improve the accuracy of ADC, the trace of ADC should be surrounded by ground. Table 16: Pin Definition of ADC Interfaces Pin Name Pin No. Description ADC0 ADC1 45 44 General purpose analog to digital converter General purpose analog to digital converter The following table describes the characteristic of ADC function. Table 17: Characteristic of ADC Parameter ADC0 Voltage Range ADC1 Voltage Range ADC Resolution Min. 0.3 0.3 Typ. Max. 15 VBAT_BB VBAT_BB Unit V V Bits EC25_Hardware_Design 56 / 112 LTE Module Series EC25 Hardware Design NOTES 1. ADC input voltage must not exceed VBAT_BB. 2. 3. It is prohibited to supply any voltage to ADC pins when VBAT is removed. It is recommended to use a resistor divider circuit for ADC application. 3.15. Network Status Indication The network indication pins can be used to drive network status indication LEDs. The module provides two pins which are NET_MODE and NET_STATUS. The following tables describe the pin definition and logic level changes in different network status. Table 18: Pin Definition of Network Connection Status/Activity Indicator Pin Name Pin No. I/O Description NET_MODE 5 NET_STATUS 6 DO DO Indicate the module network registration mode. Indicate the module network activity status. Table 19: Working State of the Network Connection Status/Activity Indicator Comment 1.8V power domain Cannot be pulled up before startup 1.8V power domain Pin Name Logic Level Changes Network Status NET_MODE Always High Always Low Registered on LTE network Others NET_STATUS Flicker slowly (200ms High/1800ms Low) Network searching Flicker slowly (1800ms High/200ms Low) Idle Flicker quickly (125ms High/125ms Low) Data transfer is ongoing Always High Voice calling EC25_Hardware_Design 57 / 112 LTE Module Series EC25 Hardware Design A reference circuit is shown in the following figure. Figure 26: Reference Circuit of the Network Indicator 3.16. STATUS The STATUS pin is an open drain output for indicating the modules operation status. It can be connected to a GPIO of DTE with a pull-up resistor, or as LED indication circuit as below. When the module is turned on normally, the STATUS will present the low state. Otherwise, the STATUS will present high-impedance state. Table 20: Pin Definition of STATUS Pin Name Pin No. I/O Description Comment STATUS 61 OD Indicate the modules operation status An external pull-up resistor is required. If unused, keep it open. The following figure shows different circuit designs of STATUS, and customers can choose either one according to customers application demands. EC25_Hardware_Design 58 / 112 LTE Module Series EC25 Hardware Design Figure 27: Reference Circuits of STATUS 3.17. Behaviors of RI AT+QCFG="risignaltype","physical" command can be used to configure RI behavior. No matter on which port URC is presented, URC will trigger the behavior of RI pin. NOTE URC can be outputted from UART port, USB AT port and USB modem port through configuration via AT+QURCCFG command. The default port is USB AT port. In addition, RI behavior can be configured flexibly. The default behavior of the RI is shown as below. Table 21: Behavior of RI State Idle URC Response RI keeps at high level RI outputs 120ms low pulse when a new URC returns The RI behavior can be changed by AT+QCFG="urc/ri/ring" command. Please refer to document [2]
for details. EC25_Hardware_Design 59 / 112 LTE Module Series EC25 Hardware Design IEEE802.3 compliance 3.18. SGMII Interface EC25 includes an integrated Ethernet MAC with an SGMII interface and two management interfaces, key features of the SGMII interface are shown below:
Support 10M/100M/1000M Ethernet work mode Support maximum 150Mbps (DL)/50Mbps (UL) for 4G network Support VLAN tagging Support IEEE1588 and Precision Time Protocol (PTP) Can be used to connect to external Ethernet PHY like AR8033, or to an external switch Management interfaces support dual voltage 1.8V/2.85V The following table shows the pin definition of SGMII interface. Table 22: Pin Definition of the SGMII Interface Pin Name Pin No. I/O Description Comment Control Signal Part EPHY_RST_N 119 DO Ethernet PHY reset 1.8V/2.85V power domain EPHY_INT_N 120 SGMII_MDATA 121 DI IO SGMII_MCLK 122 DO Ethernet PHY interrupt SGMII MDIO (Management Data Input/Output) data SGMII MDIO (Management Data Input/Output) clock USIM2_VDD 128 PO SGMII MDIO pull-up power source SGMII Signal Part SGMII_TX_M 123 AO SGMII transmission-minus SGMII_TX_P 124 AO SGMII transmission-plus SGMII_RX_P 125 SGMII_RX_M 126 AI AI SGMII receiving-plus SGMII receiving-minus 1.8V power domain 1.8V/2.85V power domain 1.8V/2.85V power domain Configurable power source. 1.8V/2.85V power domain. External pull-up power source for SGMII MDIO pins. Connect with a 0.1uF capacitor, close to the PHY side. Connect with a 0.1uF capacitor, close to the PHY side. Connect with a 0.1uF capacitor, close to EC25 module. Connect with a 0.1uF capacitor, close to EC25 module. EC25_Hardware_Design 60 / 112 LTE Module Series EC25 Hardware Design The following figure shows the simplified block diagram for Ethernet application. Figure 28: Simplified Block Diagram for Ethernet Application The following figure shows a reference design of SGMII interface with PHY AR8033 application. Figure 29: Reference Circuit of SGMII Interface with PHY AR8033 Application In order to enhance the reliability and availability in customers applications, please follow the criteria below in the Ethernet PHY circuit design:
Keep SGMII data and control signals away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc. Keep the maximum trace length less than 10-inch and keep skew on the differential pairs less than 20mil. The differential impedance of SGMII data trace is 10010%, and the reference ground of the area should be complete. Make sure the trace spacing between SGMII RX and TX is at least 3 times of the trace width, and the same to the adjacent signal traces. EC25_Hardware_Design 61 / 112 LTE Module Series EC25 Hardware Design 3.19. Wireless Connectivity Interfaces EC25 supports a low-power SDIO 3.0 interface for WLAN and a UART/PCM interface for BT. The following table shows the pin definition of wireless connectivity interfaces. Table 23: Pin Definition of Wireless Connectivity Interfaces Pin Name Pin No. I/O Description Comment WLAN Part SDC1_DATA3 SDC1_DATA2 SDC1_DATA1 SDC1_DATA0 SDC1_CLK SDC1_CMD 129 130 131 132 133 134 IO IO IO IO WLAN SDIO data bus D3 1.8V power domain WLAN SDIO data bus D2 1.8V power domain WLAN SDIO data bus D1 1.8V power domain WLAN SDIO data bus D0 1.8V power domain DO WLAN SDIO bus clock 1.8V power domain IO WLAN SDIO bus command WLAN_EN 136 DO WLAN function control via FC20 module. Coexistence and Control Part PM_ENABLE 127 DO External power control WAKE_ON_ WIRELESS 135 DI Wake up the host (EC25 module) by FC20 module COEX_UART_RX 137 DI LTE/WLAN&BT coexistence signal COEX_UART_TX 138 DO LTE/WLAN&BT coexistence signal WLAN_SLP_CLK 118 DO WLAN sleep clock 1.8V power domain 1.8V power domain. Active high. Cannot be pulled up before startup. 1.8V power domain Active high. 1.8V power domain 1.8V power domain. Cannot be pulled up before startup. 1.8V power domain. Cannot be pulled up before startup. BT Part*
BT_RTS*
BT_TXD*
37 38 DI BT UART request to send 1.8V power domain DO BT UART transmit data 1.8V power domain EC25_Hardware_Design 62 / 112 LTE Module Series EC25 Hardware Design BT_RXD*
BT_CTS*
PCM_IN1) PCM_OUT1) PCM_SYNC1) PCM_CLK1) 39 40 24 25 26 27 DI BT UART receive data DO BT UART clear to send DI DO IO IO PCM data input PCM data output PCM data frame synchronization signal PCM data bit clock BT_EN*
139 DO BT function control via BT module. 1.8V power domain 1.8V power domain. Cannot be pulled up before startup. 1.8V power domain 1.8V power domain 1.8V power domain 1.8V power domain 1.8V power domain Active high. The following figure shows a reference design of wireless connectivity interfaces with Quectel FC20 module. Module POWER PM_ENABLE DCDC/LDO VDD_EXT SDC1_DATA3 SDC1_DATA2 SDC1_DATA1 SDC1_DATA0 SDC1_CLK SDC1_CMD WLAN_EN WLAN WLAN_SLP_CLK WAKE_ON_WIRELESS COEX COEX_UART_RX COEX_UART_TX FC20 Module VDD_3V3 VIO SDIO_D3 SDIO_D2 SDIO_D1 SDIO_D0 SDIO_CLK SDIO_CMD WLAN_EN 32KHZ_IN WAKE_ON_WIRELESS LTE_UART_TXD LTE_UART_RXD Figure 30: Reference Circuit of Wireless Connectivity Interfaces with FC20 Module NOTES 1. FC20 module can only be used as a slave device. 2. When BT function is enabled on EC25 module, PCM_SYNC and PCM_CLK pins are only used to output signals. 3. For more information about wireless connectivity interfaces, please refer to document [5]. EC25_Hardware_Design 63 / 112 LTE Module Series EC25 Hardware Design
* means under development. 1) Pads 24~27 are multiplexing pins used for audio design on EC25 module and BT function on BT module. 4. 5. 3.19.1. WLAN Interface EC25 provides a low power SDIO 3.0 interface and control interface for WLAN design. SDIO interface supports the SDR mode (up to 50MHz). As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the SDIO 3.0 specification, please comply with the following principles:
It is important to route the SDIO signal traces with total grounding. The impedance of SDIO signal trace is 5010%. Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc. It is recommended to keep matching length between CLK andDATA/CMD less than 1mm and total routing length less than 50mm. Keep termination resistors within 15~24 on clock lines near the module and keep the route distance from the module clock pins to termination resistors less than 5mm. Make sure the adjacent trace spacing is 2 times of the trace width and bus capacitance is less than 15pF. NOTE WLAN is an optional function for EC25-AF which not included in current product. 3.19.2. BT Interface*
EC25 supports a dedicated UART interface and a PCM interface for BT application. Further information about BT interface will be added in future version of this document. NOTE
* means under development. BT is an optional function for EC25-AF which not included in current product. EC25_Hardware_Design 64 / 112 LTE Module Series EC25 Hardware Design 3.20. USB_BOOT Interface EC25 provides a USB_BOOT pin. Developers can pull up USB_BOOT to VDD_EXT before powering on the module, thus the module will enter into emergency download mode when powered on. In this mode, the module supports firmware upgrade over USB interface. Table 24: Pin Definition of USB_BOOT Interface Pin Name Pin No. I/O Description USB_BOOT 115 DI Force the module enter into emergency download mode The following figure shows a reference circuit of USB_BOOT interface. Module Comment 1.8V power domain. Active high. It is recommended to reserve test point. USB_BOOT Test point 4.7K Close to test point TVS VDD_EXT Figure 31: Reference Circuit of USB_BOOT Interface EC25_Hardware_Design 65 / 112 LTE Module Series EC25 Hardware Design 4 GNSS Receiver 4.1. General Description EC25 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS). EC25 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default. By default, EC25 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to document [3]. 4.2. GNSS Performance The following table shows GNSS performance of EC25. Table 25: GNSS Performance Parameter Description Cold start Conditions Autonomous Sensitivity
(GNSS) TTFF
(GNSS) Reacquisition Autonomous Tracking Cold start
@open sky Warm start
@open sky Autonomous Autonomous XTRA enabled Autonomous XTRA enabled Typ.
-146
-157
-157 35 18 26 2.2 Unit dBm dBm dBm s s s s EC25_Hardware_Design 66 / 112 LTE Module Series EC25 Hardware Design Hot start
@open sky CEP-50 Autonomous XTRA enabled Autonomous
@open sky 2.5 1.8
<1.5 s s m Accuracy
(GNSS) NOTES 1. Tracking sensitivity: the lowest GNSSsignal value at the antenna port on which the module can keep on positioning for 3 minutes. 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock. 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command. 4.3. Layout Guidelines The following layout guidelines should be taken into account in customers designs. Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna. Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be kept away from the antennas. Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection. Keep 50 characteristic impedance for the ANT_GNSS trace. Please refer to Chapter 5 for GNSS antenna reference design and antenna installation information. EC25_Hardware_Design 67 / 112 LTE Module Series EC25 Hardware Design 5 Antenna Interfaces EC25 antenna interfaces include a main antenna interface, an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface. The impedance of the antenna port is 50. 5.1. Main/Rx-diversity Antenna Interfaces 5.1.1. Pin Definition The pin definition of main antenna and Rx-diversityantenna interfaces is shown below. Table 26: Pin Definition of RF Antenna Pin Name Pin No. ANT_MAIN ANT_DIV 49 35 I/O IO AI 5.1.2. Operating Frequency Table 27: Module Operating Frequencies 3GPP Band GSM850 EGSM900 DCS1800 PCS1900 WCDMA B1 Transmit 824~849 880~915 1710~1785 1850~1910 1920~1980 Description Comment Main antenna pad Receive diversity antenna pad 50 impedance 50 impedance If unused, keep it open. Receive 869~894 925~960 1805~1880 1930~1990 2110~2170 Unit MHz MHz MHz MHz MHz EC25_Hardware_Design 68 / 112 LTE Module Series EC25 Hardware Design WCDMA B2 WCDMA B4 WCDMA B5 WCDMA B6 WCDMA B8 WCDMA B19 LTE FDD B1 LTE FDD B2 LTE FDD B3 LTE FDD B4 LTE FDD B5 LTE FDD B7 LTE FDD B8 LTE FDD B12 LTE FDD B13 LTE FDD B14 LTE FDD B18 LTE FDD B19 LTE FDD B20 LTE FDD B28 LTE TDD B38 LTE TDD B40 LTE TDD B41 LTE TDD B66 LTE TDD B71 1850~1910 1710~1755 824~849 830~840 880~915 830~845 1920~1980 1850~1910 1710~1785 1710~1755 824~849 2500~2570 880~915 699~716 777~787 788~798 815~830 830~845 832~862 703~748 2570~2620 2300~2400 2555~2655 1710~1780 663~698 1930~1990 2110~2155 869~894 875~885 925~960 875~890 2110~2170 1930~1990 1805~1880 2110~2155 869~894 2620~2690 925~960 729~746 746~756 758~768 860~875 875~890 791~821 758~803 2570~2620 2300~2400 2555~2655 2100~2200 617~652 MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHZ MHZ MHz MHz MHz MHz MHz MHz MHz MHz MHz EC25_Hardware_Design 69 / 112 LTE Module Series EC25 Hardware Design 5.1.3. Reference Design of RF Antenna Interface Areference design of ANT_MAIN and ANT_DIV antenna pads is shown as below. A -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default. Figure 32: Reference Circuit of RF Antenna Interface NOTES 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the receiving sensitivity. 2. ANT_DIV function is enabled by default. 3. Place the -type matching components (R1&C1&C2, R2&C3&C4) as close to the antenna as possible. 5.1.4. Reference Design of RF Layout For users PCB, the characteristic impedance of all RF traces should be controlled as 50. The impedance of the RF traces is usually determined by the trace width (W), the materials dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures EC25_Hardware_Design 70 / 112 LTE Module Series EC25 Hardware Design
. Figure 33: Microstrip Line Design on a 2-layer PCB Figure 34: Coplanar Waveguide Line Design on a 2-layer PCB Figure 35: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground) EC25_Hardware_Design 71 / 112 LTE Module Series EC25 Hardware Design Figure 36: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground) In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:
Please use an impedance simulation tool to control the characteristic impedance of RF traces as 50. The GND pins adjacent to RF pins should not be designed as thermal relief pads, and they should be fully connected to ground. The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones. There should be clearance area under the signal pin of the antenna connector or solder joint. The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W). For more details about RF layout, please refer to document [6]. 5.2. GNSS Antenna Interface The following tables show pin definition and frequency specification of GNSS antenna interface. Table 28: Pin Definition of GNSS Antenna Interface Pin Name Pin No. I/O Description Comment ANT_GNSS 47 AI GNSS antenna 50 impedance If unused, keep it open. EC25_Hardware_Design 72 / 112 LTE Module Series EC25 Hardware Design Table 29: GNSS Frequency Type Frequency GPS/Galileo/QZSS 1575.421.023 GLONASS BeiDou 1597.5~1605.8 1561.0982.046 A reference design of GNSS antenna is shown as below. Unit MHz MHz MHz Figure 37: Reference Circuit of GNSS Antenna NOTES If the module is designed with a passive antenna, then the VDD circuit is not needed. 1. An external LDO can be selected to supply power according to the active antenna requirement. 2. EC25_Hardware_Design 73 / 112 LTE Module Series EC25 Hardware Design 5.3. Antenna Installation 5.3.1. Antenna Requirement The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna. Table 30: Antenna Requirements Type Requirements Frequency range: 1561MHz~1615MHz Polarization: RHCP or linear VSWR: < 2 (Typ.) Passive antenna gain: > 0dBi Active antenna noise figure: < 1.5dB Active antenna gain: > 0dBi Active antenna embedded LNA gain: < 17 dB VSWR: 2 Efficiency: > 30%
Max Input Power: 50W Input Impedance: 50 Cable Insertion Loss: < 1dB
(GSM850, GSM 900, WCDMA B5/B6/B8/B19, LTE-FDD B5/B8/B12/B13/B14/B18/B19/B20/B26/B28/B71) Cable Insertion Loss: < 1.5dB
(DCS1800, PCS1900, WCDMA B1/B2/B4, LTE-FDD B1/B2/B3/B4/B66) Cable Insertion loss: < 2dB
(LTE-FDD B7, LTE-TDD B38/B40/B41) GNSS1) GSM/WCDMA/LTE NOTE 1) It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance. EC25_Hardware_Design 74 / 112 LTE Module Series EC25 Hardware Design 5.3.2. Recommended RF Connector for Antenna Installation If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by Hirose. Figure 38: Dimensions of the U.FL-R-SMT Connector (Unit: mm) U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT. Figure 39: Mechanicals of U.FL-LP Connectors EC25_Hardware_Design 75 / 112 LTE Module Series EC25 Hardware Design The following figure describes the space factor of mated connector. Figure 40: Space Factor of Mated Connector (Unit: mm) For more details, please visit http://hirose.com. EC25_Hardware_Design 76 / 112 LTE Module Series EC25 Hardware Design 6 Electrical, Reliability and Radio Characteristics 6.1. Absolute Maximum Ratings Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table. Table 31: Absolute Maximum Ratings Parameter VBAT_RF/VBAT_BB USB_VBUS Peak Current of VBAT_BB Peak Current of VBAT_RF Voltage at Digital Pins Voltage at ADC0 Voltage at ADC1 Min.
-0.3
-0.3 0 0
-0.3 0 0 Max. Unit 4.7 5.5 0.8 1.8 2.3 VBAT_BB VBAT_BB V V A A V V V EC25_Hardware_Design 77 / 112 LTE Module Series EC25 Hardware Design 6.2. Power Supply Ratings Table 32: The Module Power Supply Ratings Parameter Description Conditions Min. Typ. Max. Unit VBAT_BB and VBAT_RF Voltage drop during burst transmission Peak supply current
(during transmission slot) The actual input voltages must stay between the minimum and maximum values. Maximum power control level on EGSM900. Maximum power control level on EGSM900. VBAT IVBAT 3.3 3.8 4.3 V 400 mV 1.8 2.0 A V USB_VBUS USB detection 3.0 5.0 5.25 6.3. Operation and Storage Temperatures The operation and storage temperatures are listed in the following table. Table 33: Operation and Storage Temperatures Parameter OperationTemperature Range1) Extended Operation Range2) Storage Temperature Range Min.
-35
-40
-40 Typ.
+25 NOTES Max.
+75
+85
+90 Unit C C C 1. 2. 1) Within operation temperature range, the module is 3GPP compliant. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature EC25_Hardware_Design 78 / 112 LTE Module Series EC25 Hardware Design returns to the normal operating temperature levels, the module will meet 3GPP specifications again. 6.4. Current Consumption The values of current consumption are shown below. Table 34: EC25-E Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 (USB disconnected) GSM DRX=2 (USB disconnected) GSM DRX=9 (USB disconnected) WCDMA PF=64 (USB disconnected) Sleep state WCDMA PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) IVBAT LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=128 (USB disconnected) GSM DRX=5 (USB disconnected) GSM DRX=5 (USB connected) WCDMA PF=64 (USB disconnected) Idle state WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE-TDD PF=64 (USB disconnected) 11 1.16 2.74 2.0 2.15 1.67 2.60 1.90 2.79 2.00 19.5 29.5 21.0 31.0 20.7 30.8 20.8 uA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 79 / 112 LTE Module Series EC25 Hardware Design GPRS data transfer
(GNSS OFF) EDGE data transfer
(GNSS OFF) LTE-TDD PF=64 (USB connected) EGSM900 4DL/1UL @33.22dBm EGSM900 3DL/2UL @33.0dBm EGSM900 2DL/3UL @30.86dBm EGSM900 1DL/4UL @29.58dBm DCS1800 4DL/1UL @29.92dBm DCS1800 3DL/2UL @29.84dBm DCS1800 2DL/3UL @29.67dBm DCS1800 1DL/4UL @29.48dBm EGSM900 4DL/1UL PCL=8 @27.40dBm EGSM900 3DL/2UL PCL=8 @27.24dBm EGSM900 2DL/3UL PCL=8 @27.11dBm EGSM900 1DL/4UL PCL=8 @26.99dBm DCS1800 4DL/1UL PCL=2 @25.82dBm DCS1800 3DL/2UL PCL=2 @25.85dBm DCS1800 2DL/3UL PCL=2 @25.68dBm DCS1800 1DL/4UL PCL=2 @25.57dBm WCDMA B1 HSDPA @22.47dBm WCDMA B1 HSUPA @22.44dBm WCDMA datatransfer
(GNSS OFF) WCDMA B5 HSDPA @23.07dBm WCDMA B5 HSUPA @23.07dBm WCDMA B8 HSDPA @22.67dBm WCDMA B8 HSUPA @22.39dBm LTE datatransfer
(GNSS OFF) LTE-FDD B1 @23.27dBm LTE-FDD B3 @23.54dBm 32.0 271.0 464.0 524.0 600 192.0 311.0 424.0 539.0 174.0 281.0 379.0 480.0 159.0 251.0 340.0 433.0 613.0 609.0 671.0 669.0 561.0 557.0 754.0 774.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 80 / 112 LTE Module Series EC25 Hardware Design LTE datatransfer
(GNSS OFF) LTE-FDD B5 @22.83dBm LTE-FDD B7 @23.37dBm LTE-FDD B8 @23.48dBm LTE-FDD B20 @22.75dBm LTE-TDD B38 @23.05dBm LTE-TDD B40 @23.17dBm LTE-TDD B41 @23.02dBm GSM voice call EGSM900 PCL=5 @33.08dBm DCS1800 PCL=0 @29.75dBm WCDMA voice call WCDMA B1 @23.22dBm WCDMA B5 @23.18dBm WCDMA B8 @23.54dBm 762.0 842.0 720.0 714.0 481.0 431.8 480.0 264.0 190.0 680.0 677.0 618.0 mA mA mA mA mA mA mA mA mA mA mA mA Table 35: EC25-A Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) Sleep state WCDMA PF=128 (USB disconnected) IVBAT Idle state LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) 10 1.1 1.8 1.5 2.2 1.6 21.0 31.0 21.0 31.0 uA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 81 / 112 LTE Module Series EC25 Hardware Design WCDMA datatransfer
(GNSS OFF) WCDMA B2 HSDPA @21.9dBm WCDMA B2 HSUPA @21.62dBm WCDMA B4 HSDPA @22.02dBm WCDMA B4 HSUPA @21.67dBm WCDMA B5 HSDPA @22.71dBm WCDMA B5 HSUPA @22.58dBm LTE datatransfer
(GNSS OFF) WCDMA voice call LTE-FDD B2 @22.93dBm LTE-FDD B4 @22.96dBm LTE-FDD B12 @23.35dBm WCDMA B2 @22.93dBm WCDMA B4 @23dBm WCDMA B5 @23.78dBm Table 36: EC25-V Current Consumption Parameter Description Conditions OFF state Power down AT+CFUN=0 (USB disconnected) Sleep state LTE-FDD PF=64 (USB disconnected) IVBAT Idle state LTE-FDD PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) WCDMA B2 HSUPA @21.62dBm WCDMA B4 HSDPA @22.02dBm WCDMA B4 HSUPA @21.67dBm WCDMA B5 HSDPA @22.71dBm 591.0 606.0 524.0 540.0 490.0 520.0 715.0 738.0 663.0 646.0 572.0 549.0 Typ. 10 0.85 2.0 1.5 20.0 31.0 606.0 524.0 540.0 490.0 mA mA mA mA mA mA mA mA mA mA mA mA Unit uA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 82 / 112 LTE Module Series EC25 Hardware Design WCDMA B5 HSUPA @22.58dBm LTE datatransfer
(GNSS OFF) LTE-FDD B4 @23.14dBm LTE-FDD B13 @23.48dBm 520.0 770.0 531.0 mA mA mA Table 37: EC25-J Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=128 (USB disconnected) Sleep state LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=128 (USB disconnected) WCDMA PF=64 (USB disconnected) IVBAT WCDMA PF=64 (USB connected) Idle state WCDMA datatransfer
(GNSS OFF) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=64 (USB connected) WCDMA B1 HSDPA @22.32dBm WCDMA B1 HSUPA @22.64dBm WCDMA B6 HSDPA @22.02dBm WCDMA B6 HSUPA @22.33dBm WCDMA B19 HSDPA @22.67dBm 10 1.1 1.9 1.5 2.5 1.8 2.6 1.9 21.0 31.0 21.0 32.0 21.0 32.0 550.0 516.0 524.0 521.0 517.0 uA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 83 / 112 LTE Module Series EC25 Hardware Design WCDMA B19 HSUPA @22.33dBm LTE-FDD B1 @23.16dBm LTE-FDD B3 @23.22dBm LTE-FDD B8 @23.22dBm LTE-FDD B18 @23.35dBm LTE-FDD B19 @23.16dBm LTE-FDD B26 @22.87dBm LTE-TDD B41 @22.42dBm WCDMA B1 @22.33dBm WCDMA B6 @23.28dBm WCDMA B19 @23.28dBm LTE datatransfer
(GNSS OFF) WCDMA voice call 522.0 685.0 766.0 641.0 661.0 677.0 690.0 439.0 605.0 549.0 549.0 mA mA mA mA mA mA mA mA mA mA mA Table 38: EC25-AU Current Consumption Parameter Description Conditions Typ. Unit OFF state Power down AT+CFUN=0 IVBAT Sleep state AT+CFUN=0 (USB disconnected) GSM850 DRX=5 (USB disconnected) EGSM900 DRX=5 (USB disconnected) DCS1800 DRX=5 (USB disconnected) PCS1900 DRX=5 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) 11 1.3 1.46 1.8 2.0 1.9 1.9 2.0 1.6 2.2 1.6 uA mA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 84 / 112 LTE Module Series EC25 Hardware Design Idle state GPRS data transfer
(GNSS OFF) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=128 (USB disconnected) EGSM900 DRX=5 (USB disconnected) EGSM900 DRX=5 (USB connected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=64 (USB connected) GSM850 1UL/4DL @32.53dBm GSM850 2UL/3DL @32.34dBm GSM850 3UL/2DL @30.28dBm GSM850 4UL/1DL @29.09dBm EGSM900 1UL/4DL @32.34dBm EGSM900 2UL/3DL @32.19dBm EGSM900 3UL/2DL @30.17dBm EGSM900 4UL/1DL @28.96dBm DCS1800 1UL/4DL @29.71dBm DCS1800 2UL/3DL @29.62dBm DCS1800 3UL/2DL @29.49dBm DCS1800 4UL/1DL @29.32dBm PCS1900 1UL/4DL @29.61dBm PCS1900 1UL/4DL @29.48dBm PCS1900 1UL/4DL @29.32dBm 2.3 1.6 22.0 34.0 22.0 33.0 24.0 35.0 24.0 35.0 232.0 384.0 441.0 511.0 241.0 397.0 459.0 533.0 183.0 289.0 392.0 495.0 174.0 273.0 367.0 mA mA mA mA mA mA mA mA Ma mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 85 / 112 LTE Module Series EC25 Hardware Design PCS1900 1UL/4DL @29.19dBm GSM850 1UL/4DL @27.09dBm GSM850 2UL/3DL @26.94dBm GSM850 3UL/2DL @26.64dBm GSM850 4UL/1DL @26.53dBm EGSM900 1UL/4DL @26.64dBm EGSM900 2UL/3DL @26.95dBm EGSM900 3UL/2DL @26.57dBm EGSM900 4UL/1DL @26.39dBm DCS18001 UL/4DL @26.03dBm DCS1800 2UL/3DL @25.62dBm DCS1800 3UL/2DL @25.42dBm DCS1800 4UL/1DL @25.21dBm PCS1900 1UL/4DL @25.65dBm PCS1900 1UL/4DL @25.63dBm PCS1900 1UL/4DL @25.54dBm PCS1900 1UL/4DL @25.26dBm WCDMA B1 HSDPA @22.34dBm WCDMA B1 HSUPA @21.75dBm WCDMA B2 HSDPA @22.51dBm WCDMA B2 HSUPA @22. 14dBm WCDMA B5 HSDPA @22.98dBm WCDMA B5 HSUPA @22.89dBm WCDMA B8 HSDPA @22.31dBm WCDMA B8 HSUPA @22.11dBm EDGE data transfer
(GNSS OFF) WCDMA data
(GNSS OFF) 465.0 154.0 245.0 328.0 416.0 157.0 251.0 340.0 431.0 152.0 240.0 325.0 415.0 148.0 232.0 313.0 401.0 625.0 617.0 610.0 594.0 576.0 589.0 556.0 572.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC25_Hardware_Design 86 / 112 LTE Module Series EC25 Hardware Design LTE-FDD B1 @23.28dBm LTE-FDD B2 @23.34dBm LTE-FDD B3 @23.2dBm LTE-FDD B4 @22.9dBm LTE-FDD B5 @23.45dBm LTE-FDD B7 @22.84dBm LTE-FDD B8 @22.92dBm LTE-FDD B28 @23.23dBm LTE-TDD B40 @23.3dBm GSM850 PCL5 @32.66dBm EGSM900 PCL5 @32.59dBm DCS1800 PCL0 @29.72dBm PCS1900 PCL0 @29.82dBm WCDMA B1 @23.27dBm WCDMA B2 @23.38dBm WCDMA B5 @23.38dBm WCDMA B8 @23.32dBm LTE datatransfer
(GNSS OFF) GSM voice call WCDMA voice call 817.0 803.0 785.0 774.0 687.0 843.0 689.0 804.0 429.0 228.0 235.0 178.0 170.0 687.0 668.0 592.0 595.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Table 39: EC25-AUT Current Consumption Parameter Description Conditions Typ. Unit IVBAT OFF state Power down AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) Sleep state WCDMA PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) 10 1.0 1.9 1.5 2.3 1.9 uA mA mA mA mA mA EC25_Hardware_Design 87 / 112 LTE Module Series EC25 Hardware Design IVBAT Idle state WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=64 (USB connected) WCDMA B1 HSDPA @22.24dBm WCDMA datatransfer
(GNSS OFF) WCDMA B1 HSUPA @22.05dBm WCDMA B5 HSDPA @22.39dBm WCDMA B5 HSUPA @22dBm LTE-FDD B1 @23.28dBm LTE-FDD B3 @23.36dBm LTE datatransfer
(GNSS OFF) LTE-FDD B5 @23.32dBm LTE-FDD B7 @23.08dBm LTE-FDD B28-A @23.37dBm LTE-FDD B28-B @23.48dBm WCDMA voice call WCDMA B1 @23.22dBm WCDMA B5 @23.01dBm 23.0 33.0 17.0 29.0 21.0 32.0 500.0 499.0 418.0 486.0 707.0 782.0 588.0 692.0 752.0 770.0 546.0 511.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Table 40: EC25-AF Current Consumption Parameter Description Conditions Typ. Unit IVBAT OFF state Power down AT+CFUN=0 (USB disconnected) Sleep state WCDMA PF=64 (USB disconnected) WCDMA PF=128 (USB disconnected) 10 1.0 1.8 1.4 uA mA mA mA EC25_Hardware_Design 88 / 112 LTE Module Series EC25 Hardware Design LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) WCDMA B2 HSDPA @22.36dBm WCDMA B2 HSUPA @22.27dBm WCDMA B4 HSDPA @22.22dBm WCDMA B4 HSUPA @22.31dBm WCDMA B5 HSDPA @22.39dBm WCDMA B5 HSUPA @22dBm Idle state WCDMA datatransfer
(GNSS OFF) LTE-FDD B2 @23.2dBm LTE-FDD B4 @23.85dBm LTE-FDD B5 @23.0dBm LTE-FDD B12 @23.08dBm LTE-FDD B13 @23.1dBm LTE-FDD B14 @23.5dBm LTE-FDD B66 @22.9dBm LTE-FDD B71 @22.88dBm WCDMA B2 @23.24dBm WCDMA B4 @23.2dBm WCDMA B5 @23.4dBm LTE datatransfer
(GNSS OFF) WCDMA voice call 2.2 1.8 23.3 33.4 17.6 29.4 509.0 511.0 521.0 518.0 496.0 502.0 600.0 634.0 600.0 692.0 660.0 676.0 662.0 600.0 570.0 581.0 500.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA IVBAT EC25_Hardware_Design 89 / 112 LTE Module Series EC25 Hardware Design Table 41: GNSS Current Consumption of EC25 Series Module Parameter Description Conditions Searching
(AT+CFUN=0) Tracking
(AT+CFUN=0) Cold start @Passive Antenna Lost state @Passive Antenna Instrument Environment Open Sky @Passive Antenna Open Sky @Active Antenna IVBAT
(GNSS) 6.5. RF Output Power The following table shows the RF output power of EC25 module. Table 42: RF Output Power Frequency GSM850/EGSM900 DCS1800/PCS1900 Max. 33dBm2dB 30dBm2dB GSM850/EGSM900 (8-PSK) 27dBm3dB DCS1800/PCS1900 (8-PSK) 26dBm3dB WCDMA bands LTE-FDD bands LTE-TDD bands NOTE 24dBm+1/-3dB 23dBm2dB 23dBm2dB Typ. 54.0 53.9 30.5 33.2 40.8 Unit mA mA mA mA mA Min. 5dBm5dB 0dBm5dB 5dBm5dB 0dBm5dB
<-49dBm
<-39dBm
<-39dBm In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. The design conforms to the GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1. EC25_Hardware_Design 90 / 112 LTE Module Series EC25 Hardware Design 6.6. RF Receiving Sensitivity The following tables show conducted RF receiving sensitivity of EC25 series module. Table 43: EC25-E Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) EGSM900 DCS1800
-109.0dBm
-109.0dBm WCDMA B1
-110.5dBm WCDMA B5
-110.5dBm WCDMA B8
-110.5dBm LTE-FDD B1 (10M)
-98.0dBm LTE-FDD B3 (10M)
-96.5dBm LTE-FDD B5 (10M)
-98.0dBm LTE-FDD B7 (10M)
-97.0dBm LTE-FDD B8 (10M)
-97.0dBm LTE-FDD B20 (10M)
-97.5dBm LTE-TDD B38 (10M)
-96.7dBm LTE-TDD B40 (10M)
-96.3dBm LTE-TDD B41 (10M)
-95.2dBm
/
/
/
/
/
-98.0dBm
-98.5dBm
-98.5dBm
-94.5dBm
-97.0dBm
-99.0dBm
-97.0dBm
-98.0dBm
-95.7dBm
/
/
/
/
/
-102.0dBm
-102.0dbm
-106.7dBm
-104.7dBm
-103.7dBm
-101.5dBm
-96.3dBm
-101.5dBm
-93.3dBm
-101.0dBm
-94.3dBm
-99.5dBm
-94.3dBm
-101.0dBm
-93.3dBm
-102.5dBm
-93.3dBm
-100.0dBm
-96.3dBm
-101.0dBm
-96.3dBm
-99.0dBm
-94.3dBm Table 44: EC25-A Conducted RF Receiving Sensitivity Frequency WCDMA B2 WCDMA B4 WCDMA B5 Primary Diversity SIMO1) 3GPP (SIMO)
-110.0dBm
-110.0dBm
-110.5dBm
/
/
/
/
/
/
-104.7dBm
-106.7dBm
-104.7dBm EC25_Hardware_Design 91 / 112 LTE Module Series EC25 Hardware Design LTE-FDD B2 (10M)
-98.0dBm LTE-FDD B4 (10M)
-97.5dBm LTE-FDD B12 (10M)
-96.5dBm
-98.0dBm
-99.0dBm
-98.0dBm
-101.0dBm
-94.3dBm
-101.0dBm
-96.3dBm
-101.0dBm
-93.3dBm Table 45: EC25-V Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm LTE-FDD B13 (10M)
-95.0dBm
-97.0dBm
-100.0dBm
-93.3dBm Table 46: EC25-J Conducted RF Receiving Sensitivity Primary Diversity SIMO1) 3GPP (SIMO) Frequency WCDMA B1 WCDMA B6 WCDMA B8
-110.0dBm
-110.5dBm
-110.5dBm WCDMA B19
-110.5dBm LTE-FDD B1 (10M)
-97.5dBm LTE-FDD B3 (10M)
-96.5dBm LTE-FDD B8 (10M)
-98.4dBm LTE-FDD B18 (10M)
-99.5dBm LTE-FDD B19 (10M)
-99.2dBm LTE-FDD B26 (10M)
-99.5dBm LTE-TDD B41 (10M)
-95.0dBm
/
/
/
/
-98.7dBm
-97.1dBm
-99.0dBm
-99.0dBm
-99.0dBm
-99.0dBm
-95.7dBm
/
/
/
/
-106.7dBm
-106.7dBm
-103.7dBm
-106.7dBm
-100.2dBm
-96.3dBm
-100.5dBm
-93.3dBm
-101.2dBm
-93.3dBm
-101.7dBm
-96.3dBm
-101.4dBm
-96.3dBm
-101.5dBm
-93.8dBm
-99.0dBm
-94.3dBm EC25_Hardware_Design 92 / 112 LTE Module Series EC25 Hardware Design Table 47: EC25-AU Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO1) 3GPP (SIMO) GSM850 EGSM900 DCS1800 PCS1900 WCDMA B1 WCDMA B2 WCDMA B5 WCDMA B8
-109.0dBm
-109.0dBm
-109.0dBm
-109.0dBm
-110.0dBm
-110.0dBm
-111.0dBm
-111.0dBm
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
-102.0dBm
-102.0dBm
-102.0dBm
-102.0dBm
-106.7dBm
-104.7dBm
-104.7dBm
-103.7dBm LTE-FDD B1 (10M)
-97.2dBm
-97.5dBm
-100.2dBm
-96.3dBm LTE-FDD B2 (10M)
-98.2dBm
/
/
-94.3dBm LTE-FDD B3 (10M)
-98.7dBm LTE-FDD B4 (10M)
-97.7dBm LTE-FDD B5 (10M)
-98.0dBm LTE-FDD B7 (10M)
-97.7dBm LTE-FDD B8 (10M)
-99.2dBm LTE-FDD B28 (10M)
-98.6dBm LTE-TDD B40 (10M)
-97.2dBm
-98.6dBm
-97.4dBm
-98.2dBm
-97.7dBm
-98.2dBm
-98.7dBm
-98.4dBm
-102.2dBm
-93.3dBm
-100.2dBm
-96.3dBm
-101.0dBm
-94.3dBm
-101.2dBm
-94.3dBm
-102.2dBm
-93.3dBm
-102.0dBm
-94.8dBm
-101.2dBm
-96.3dBm Table 48: EC25-AUT Conducted RF Receiving Sensitivity Frequency WCDMA B1 WCDMA B5 Primary Diversity SIMO1) 3GPP (SIMO)
-110.0dBm
-110.5dBm
/
/
/
/
-106.7dBm
-104.7dBm LTE-FDD B1 (10M)
-98.5dBm
-98.0dBm
-101.0dBm
-96.3dBm EC25_Hardware_Design 93 / 112 LTE Module Series EC25 Hardware Design LTE-FDD B3 (10M)
-98.0dBm
-96.0dBm
-100.0dBm
-93.3dBm LTE-FDD B5 (10M)
-98.0dBm LTE-FDD B7 (10M)
-97.0dBm
-99.0dBm
-95.0dBm
-102.5dBm
-94.3dBm
-98.5dBm
-94.3dBm LTE-FDD B28 (10M)
-97.0dBm
-99.0dBm
-102.0dBm
-94.8dBm Table 49: EC25-AUTL Conducted RF Receiving Sensitivity Frequency Primary LTE-FDD B3 (10M)
-98.0dBm LTE-FDD B7 (10M)
-97.0dBm Diversity
-96.0dBm
-95.0dBm SIMO1) 3GPP (SIMO)
-100.0dBm
-93.3dBm
-98.5dBm
-94.3dBm LTE-FDD B28 (10M)
-97.0dBm
-99.0dBm
-102.0dBm
-94.8dBm Table 50: EC25-AF Conducted RF Receiving Sensitivity Frequency WCDMA B2 WCDMA B4 WCDMA B5 Primary Diversity SIMO1) 3GPP (SIMO)
-109.5dBm
-111dbm
-113dbm
-104.7dBm
-108dBm
-111dbm
-111.5dbm
-106.7dBm
-110.5dBm
-111.5dbm
-114dbm
-104.7dBm LTE-FDD B2 (10M)
-98.2dBm
-99.1dBm
-101.7dBm
-94.3dBm LTE-FDD B4 (10M)
-97.3dBm
-98.6dBm
-101.1dBm
-96.3dBm LTE-FDD B5 (10M)
-99dBm
-100.3dBm
-101.3dBm
-94.3Bm LTE-FDD B12 (10M)
-99dBm
-99.2dBm
-102.1dBm
-93.3dBm LTE-FDD B13 (10M)
-98.1dBm
-98.4dBm
-100.2dBm
-93.3dBm LTE-FDD B14 (10M)
-97.9dBm
-98.6dBm
-99.5dBm
-93.3dBm LTE-FDD B66 (10M)
-96.7dBm
-98.1dBm
-99.4dBm
-96.5dBm LTE-FDD B71 (10M)
-99.2dBm
-99.4dBm
-101.5dBm
-94.2dBm EC25_Hardware_Design 94 / 112 LTE Module Series EC25 Hardware Design NOTE 1) SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas at the receiver side, which can improve RX performance. 6.7. Electrostatic Discharge The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module. The following table shows the module electrostatics discharge characteristics. Table 51: Electrostatics Discharge Characteristics Tested Points VBAT, GND All Antenna Interfaces Other Interfaces Contact Discharge Air Discharge Unit 5 4 0.5 10 8 1 kV kV kV 6.8. Thermal Consideration In order to achieve better performance of the module, it is recommended to comply with the following principles for thermal consideration:
On customers PCB design, please keep placement of the module away from heating sources, especially high power components such as ARM processor, audio power amplifier, power supply, etc. Do not place components on the opposite side of the PCB area where the module is mounted, in order to facilitate adding of heatsink when necessary. Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as to ensure better heat dissipation performance. The reference ground of the area where the module is mounted should be complete, and add ground vias as many as possible for better heat dissipation. Make sure the ground pads of the module and PCB are fully connected. EC25_Hardware_Design 95 / 112 LTE Module Series EC25 Hardware Design According to customers application demands, the heatsink can be mounted on the top of the module, or the opposite side of the PCB area where the module is mounted, or both of them. The heatsink should be designed with as many fins as possible to increase heat dissipation area. Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and module/PCB. The following shows two kinds of heatsink designs for reference and customers can choose one or both of them according to their application structure. Figure 41: Referenced Heatsink Design (Heatsink at the Top of the Module) Figure 42: Referenced Heatsink Design (Heatsink at the Backside of Customers PCB) EC25_Hardware_Design 96 / 112 LTE Module Series EC25 Hardware Design NOTE The module offers the best performance when the internal BB chip stays below 105C. When the maximum temperature of the BB chip reaches or exceeds 105C, the module works normal but provides reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip temperature reaches or exceeds 115C, the module will disconnect from the network, and it will recover to network connected state after the maximum temperature falls below 115C. Therefore, the thermal design should be maximally optimized to make sure the maximum BB chip temperature always maintains below 105C. Customers can execute AT+QTEMP command and get the maximum BB chip temperature from the first returned value. EC25_Hardware_Design 97 / 112 LTE Module Series EC25 Hardware Design 7 Mechanical Dimensions This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm. The tolerances for dimensions without tolerance values are 0.05mm. 7.1. Mechanical Dimensions of the the Module 32.00.15 2.40.2
. 5 1 0 0 9 2
. Figure 43: Module Top and Side Dimensions 0.8 EC25_Hardware_Design 98 / 112 LTE Module Series EC25 Hardware Design Figure 44: Module Bottom Dimensions (Bottom View) EC25_Hardware_Design 99 / 112 LTE Module Series EC25 Hardware Design 7.2. Recommended Footprint Figure 45: Recommended Footprint (Top View) NOTES 1. The keepout area should not be designed. 2. For easy maintenance of the module, please keep about 3mm between the module and other components in thehost PCB. EC25_Hardware_Design 100 / 112 LTE Module Series EC25 Hardware Design 7.3. Design Effect Drawings of the Module Figure 46: Top View of the Module Figure 47: Bottom View of the Module NOTE These are design effect drawings of EC25 module. For more accurate pictures, please refer to the module that you get from Quectel. EC25_Hardware_Design 101 / 112 LTE Module Series EC25 Hardware Design 8 Storage, Manufacturing and Packaging 8.1. Storage EC25 is stored in a vacuum-sealed bag. It is rated at MSL 3, and its storage restrictions are listed below. 1. Shelf life in vacuum-sealed bag: 12 months at <40C/90%RH. 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
Mounted within 168 hours at the factory environment of 30C/60%RH. Stored at <10% RH. 3. Devices require bake before mounting, if any circumstances below occurs:
When the ambient temperature is 23C5C and the humidity indicator card shows the humidity Device mounting cannot be finished within 168 hours at factory conditions of 30C/60%RH. is >10% before opening the vacuum-sealed bag. If baking is required, devices may be baked for 8 hours at 120C5C. 4. NOTE As the plastic packagecannot be subjected to high temperature, it should be removed from devices before high temperature (120C) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033 for baking procedure. EC25_Hardware_Design 102 / 112 LTE Module Series EC25 Hardware Design 8.2. Manufacturing and Soldering Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properlyso as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, thethickness of stencil for the module is recommended to be 0.20mm. For more details, please refer to document [4]. It is suggested that the peak reflow temperature is 235C~245C (for SnAg3.0Cu0.5 alloy). The absolute maximum reflow temperature is 260C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:
Figure 48: Reflow Soldering Thermal Profile EC25_Hardware_Design 103 / 112 LTE Module Series EC25 Hardware Design 8.3. Packaging EC25 is packaged in tap andreel carriers. One reel is 11.88m long and contains 250pcs modules. The figure below shows the package details, measured in mm. 1 0 5 7
. 1
. 5 1 0 0 2
. 0 2
. 3 0 0 0 4 4
. 44.00 0.1 2.00 0.1 4.00 0.1 32.5 0.15 33.5 0.15 32.5 0.15 33.5 0.15 48.5 0 0 1 13 44.5+0.20
-0.00 1.50 0.1 0.35 0.05 5 1
. 0 3 9 2
. 5 1
. 0 3 0 3
. 5 1
. 0 3 0 3
. 4.2 0.15 3.1 0.15 Cover tape Direction of feed Figure 49: Tape and Reel Specifications EC25_Hardware_Design 104 / 112 LTE Module Series EC25 Hardware Design 9 Appendix A References Table 52: Related Documents SN Document Name Remark Quectel_EC2x&EG9x&EM05_Power_Management_ Application_Note Power management application notefor EC25, EC21, EC20 R2.0, EC20 R2.1, EG95, EG91 and EM05 modules Quectel_EC25&EC21_AT_Commands_Manual EC25 and EC21 AT commands manual Quectel_EC25&EC21_GNSS_AT_Commands_ Manual EC25 and EC21 GNSS AT commands manual Quectel_Module_Secondary_SMT_User_Guide Module secondary SMT user guide Quectel_EC25_Reference_Design EC25 reference design Quectel_RF_Layout_Application_Note RF layout application note
[1]
[2]
[3]
[4]
[5]
[6]
Table 53: Terms and Abbreviations Abbreviation Description AMR bps CHAP CS CSD CTS Adaptive Multi-rate Bits Per Second Challenge Handshake Authentication Protocol Coding Scheme Circuit Switched Data Clear To Send DC-HSPA+
DFOTA Dual-carrier High Speed Packet Access Delta Firmware Upgrade Over The Air EC25_Hardware_Design 105 / 112 LTE Module Series EC25 Hardware Design DL DTR DTX EFR ESD FDD FR Downlink Data Terminal Ready Discontinuous Transmission Enhanced Full Rate Electrostatic Discharge Frequency Division Duplex Full Rate GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System GMSK GNSS GPS GSM HR HSPA HSDPA HSUPA I/O Inorm LED LNA LTE MIMO MO MS MT Gaussian Minimum Shift Keying Global Navigation Satellite System Global Positioning System Global System for Mobile Communications Half Rate High Speed Packet Access High Speed Downlink Packet Access High Speed Uplink Packet Access Input/Output Normal Current Light Emitting Diode Low Noise Amplifier Long Term Evolution Multiple Input Multiple Output Mobile Originated Mobile Station (GSM engine) Mobile Terminated EC25_Hardware_Design 106 / 112 LTE Module Series EC25 Hardware Design PAP PCB PDU PPP QAM QPSK RF RHCP Rx SIM SIMO SMS TDD Password Authentication Protocol Printed Circuit Board Protocol Data Unit Point-to-Point Protocol Quadrature Amplitude Modulation Quadrature Phase Shift Keying Radio Frequency Right Hand Circularly Polarized Receive Subscriber Identification Module Single Input Multiple Output Short Message Service Time Division Duplexing TDMA Time Division Multiple Access TD-SCDMA Time Division-Synchronous Code Division Multiple Access TX UL UMTS URC USIM Vmax Vnorm Vmin VIHmax VIHmin Transmitting Direction Uplink Universal Mobile Telecommunications System Unsolicited Result Code Universal Subscriber Identity Module Maximum Voltage Value Normal Voltage Value Minimum Voltage Value Maximum Input High Level Voltage Value Minimum Input High Level Voltage Value EC25_Hardware_Design 107 / 112 LTE Module Series EC25 Hardware Design VILmax VILmin VImax VImin VOHmax VOHmin VOLmax VOLmin VSWR WCDMA WLAN Maximum Input Low Level Voltage Value Minimum Input Low Level Voltage Value Absolute Maximum Input Voltage Value Absolute Minimum Input Voltage Value Maximum Output High Level Voltage Value Minimum Output High Level Voltage Value Maximum Output Low Level Voltage Value Minimum Output Low Level Voltage Value Voltage Standing Wave Ratio Wideband Code Division Multiple Access Wireless Local Area Network EC25_Hardware_Design 108 / 112 LTE Module Series EC25 Hardware Design 10 Appendix B GPRS Coding Schemes Table 54: Description of Different Coding Schemes Scheme Code Rate USF Pre-coded USF CS-1 1/2 3 3 Radio Block excl.USF and BCS 181 BCS Tail Coded Bits Punctured Bits Data Rate Kb/s 40 4 456 0 9.05 CS-2 2/3 3 6 268 16 4 588 132 13.4 CS-3 3/4 3 6 312 16 4 676 220 15.6 CS-4 1 3 12 428 16
-
456
-
21.4 EC25_Hardware_Design 109 / 112 LTE Module Series EC25 Hardware Design 11 Appendix C GPRS Multi-slot Classes Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table. Table 55: GPRS Multi-slot Classes Multislot Class Downlink Slots Uplink Slots Active Slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 2 3 2 3 3 4 3 4 4 4 3 4 1 1 2 1 2 2 3 1 2 2 3 4 3 4 2 3 3 4 4 4 4 5 5 5 5 5 NA NA EC25_Hardware_Design 110 / 112 LTE Module Series EC25 Hardware Design 5 6 7 8 6 6 6 6 6 8 8 8 8 8 8 5 5 5 5 5 6 7 8 2 3 4 4 6 2 3 4 4 6 8 1 2 3 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6 6 6 6 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 EC25_Hardware_Design 111 / 112 LTE Module Sires EC25Hardware Design 12 Appendix D EDGE Modulationand Coding Schemes Table 56: EDGE Modulation and Coding Schemes Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot 4 Timeslot GMSK GMSK GMSK GMSK GMSK GMSK GMSK GMSK 8-PSK 8-PSK 8-PSK 8-PSK 8-PSK
/
/
/
/
C B A C B A B A A 9.05kbps 18.1kbps 36.2kbps 13.4kbps 26.8kbps 53.6kbps 15.6kbps 31.2kbps 62.4kbps 21.4kbps 42.8kbps 85.6kbps 8.80kbps 17.60kbps 35.20kbps 11.2kbps 22.4kbps 44.8kbps 14.8kbps 29.6kbps 59.2kbps 17.6kbps 35.2kbps 70.4kbps 22.4kbps 44.8kbps 89.6kbps 29.6kbps 59.2kbps 118.4kbps 44.8kbps 89.6kbps 179.2kbps 54.4kbps 108.8kbps 217.6kbps 59.2kbps 118.4kbps 236.8kbps CS-1:
CS-2:
CS-3:
CS-4:
MCS-1 MCS-2 MCS-3 MCS-4 MCS-5 MCS-6 MCS-7 MCS-8 MCS-9 EC25_Hardware_Design 112 / 112 LTE Module Sires EC25Hardware Design FCC Certification Requirements. According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device. And the following conditions must be met:
1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-
averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091. 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the users body and must not transmit simultaneously with any other antenna or transmitter. 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201808EC25AF. 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:
WCDMA B2/LTE B2: <8dBi WCDMA B4LTE B4/B66: <5dBi WCDMA B5/LTE B5: <9.416dBi LTE B14: <9.255dBi LTE B13: <9.173dBi LTE B12: <8.734dBi LTE B71: <8.545dBi 5. This module must not transmit simultaneously with any other antenna or transmitter 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines. For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093 EC25_Hardware_Design 113 / 113 LTE Module Sires EC25Hardware Design If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations. For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:
A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph). For a host using a certified modular with a standard fixed label, if (1) the modules FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible;
then an additional permanent label referring to the enclosed module:Contains Transmitter Module FCC ID: XMR201808EC25AF or Contains FCC ID: XMR201808EC25AF must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID. The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:
EC25_Hardware_Design 114 / 114 LTE Module Sires EC25Hardware Design
(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the users authority to operate the equipment. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements. IC Statement IRSS-GEN
"This device complies with Industry Canadas licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device." or "Le prsent appareil est conforme aux CNR dIndustrie Canada applicables aux appareils radio exempts de licence. Lexploitation est autorise aux deux conditions suivantes :
1) lappareil ne doit pas produire de brouillage; 2) lutilisateur de lappareil doit accepter tout brouillage radiolectrique subi, mme si le brouillage est susceptible den compromettre le fonctionnement."
Dclaration sur l'exposition aux rayonnements RF L'autre utilis pour l'metteur doit tre install pour fournir une distance de sparation d'au moins 20 cm de toutes les personnes et ne doit pas tre colocalis ou fonctionner conjointement avec une autre antenne ou un autre metteur. The host product shall be properly labeled to identify the modules within the host product. The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labeled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word Contains or similar wording expressing the same meaning, as follows:
Contains IC: 10224A-2018EC25AF or where: 10224A-2018EC25AF is the modules certification number. Le produit hte doit tre correctement tiquet pour identifier les modules dans le produit hte. EC25_Hardware_Design 115 / 115 LTE Module Sires EC25Hardware Design L'tiquette de certification d'Innovation, Sciences et Dveloppement conomique Canada d'un module doit tre clairement visible en tout temps lorsqu'il est installdans le produit hte; sinon, le produit hte doit porter une tiquette indiquant le numro de certification d'Innovation, Sciences et Dveloppement conomique Canada pour le module, prcd du mot Contient ou d'un libell semblable exprimant la mme signification, comme suit:
"Contient IC: 10224A-2018EC25AF" ou "o: 10224A-2018EC25AF est le numro de certification du module". EC25_Hardware_Design 116 / 116 EC25 Mini PCIe Hardware Design LTE Module Series Rev. EC25_Mini_PCIe_Hardware_Design_V1.1 Date: 2017-01-24 www.quectel.com LTE Module Series EC25 Mini PCIe Hardware Design Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd. Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233 Tel: +86 21 5108 6236 Email: info@quectel.com Or our local office. For more information, please visit:
http://www.quectel.com/support/salesupport.aspx For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx Or email to: Support@quectel.com GENERAL NOTES QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved. EC25_Mini_PCIe_Hardware_Design Confidential / Released 1 / 46 LTE Module Series EC25 Mini PCIe Hardware Design About the Document History Revision Date Author Description 1.0 2016-06-07 Mountain ZHOU/
Frank WANG Initial 1.1 2017-01-24 Lyndon LIU/
Frank WANG 1. Deleted description of EC25-AUT Mini PCIe in Table 1. 2. Added description of EC25-AU and EC25-J Mini PCIe in Table 1. 3. Updated key features of EC25 Mini PCIe in Table 2. 4. Added current consumption in Chapter 4.7. 5. Updated conducted RF receiving sensitivity of EC25-A Mini PCIe in Table 17. 6. Added conducted RF receiving sensitivity of EC25-J Mini PCIe in Table 18. EC25_Mini_PCIe_Hardware_Design Confidential / Released 2 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Contents About the Document ................................................................................................................................ 2 Contents .................................................................................................................................................... 3 Table Index ............................................................................................................................................... 5 Figure Index .............................................................................................................................................. 6 1 Introduction ....................................................................................................................................... 7 1.1. Safety Information ................................................................................................................... 8 2 Product Concept ............................................................................................................................... 9 2.1. General Description ................................................................................................................ 9 Description of Product Series ................................................................................................ 10 2.2. 2.3. Key Features ..........................................................................................................................11 Functional Diagram ............................................................................................................... 13 2.4. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3 Application Interface ....................................................................................................................... 14 3.1. General Description .............................................................................................................. 14 3.2. EC25 Mini PCIe Interface ...................................................................................................... 14 3.2.1. Definition of Interface ................................................................................................... 14 3.2.2. Pin Assignment ............................................................................................................ 17 Power Supply ........................................................................................................................ 18 USIM Card Interface ............................................................................................................. 19 USB Interface ........................................................................................................................ 20 UART Interface ..................................................................................................................... 21 PCM and I2C Interfaces ........................................................................................................ 22 Control Signals ...................................................................................................................... 24 3.8.1. RI Signal ...................................................................................................................... 25 3.8.2. DTR Signal .................................................................................................................. 25 3.8.3. W_DISABLE# Signal ................................................................................................... 25 3.8.4. PERST# Signal ............................................................................................................ 25 3.8.5. LED_WWAN# Signal ................................................................................................... 26 3.8.6. WAKE# Signal ............................................................................................................. 27 Antenna Interfaces ................................................................................................................ 27 3.9. 4 Electrical and Radio Characteristics ............................................................................................. 29 4.1. General Description .............................................................................................................. 29 Power Supply Requirements ................................................................................................. 29 4.2. I/O Requirements .................................................................................................................. 30 4.3. 4.4. RF Characteristics ................................................................................................................ 30 4.5. GNSS Receiver ..................................................................................................................... 32 ESD Characteristics .............................................................................................................. 33 4.6. 4.7. Current Consumption ............................................................................................................ 33 5 Dimensions and Packaging ............................................................................................................ 38 5.1. General Description .............................................................................................................. 38 EC25_Mini_PCIe_Hardware_Design Confidential / Released 3 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 5.2. Mechanical Dimensions of EC25 Mini PCIe .......................................................................... 38 Standard Dimensions of Mini PCI Express ............................................................................ 39 5.3. 5.4. Packaging Specification ........................................................................................................ 40 6 Appendix References ..................................................................................................................... 41 EC25_Mini_PCIe_Hardware_Design Confidential / Released 4 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Table Index TABLE 1: DESCRIPTION OF EC25 MINI PCIE ................................................................................................ 10 TABLE 2: KEY FEATURES OF EC25 MINI PCIE .............................................................................................. 11 TABLE 3: DEFINITION OF I/O PARAMETERS ................................................................................................. 14 TABLE 4: DESCRIPTION OF PINS .................................................................................................................. 15 TABLE 5: DEFINITION OF VCC_3V3 AND GND PINS .................................................................................... 18 TABLE 6: USIM PIN DEFINITION ..................................................................................................................... 19 TABLE 7: PIN DEFINITION OF USB INTERFACE ........................................................................................... 20 TABLE 8: PIN DEFINITION OF THE UART INTERFACE ................................................................................. 21 TABLE 9: PIN DEFINITION OF PCM AND I2C INTERFACES ......................................................................... 22 TABLE 10: PIN DEFINITION OF CONTROL SIGNALS .................................................................................... 24 TABLE 11: RADIO OPERATIONAL STATES ..................................................................................................... 25 TABLE 12: INDICATIONS OF NETWORK STATUS ......................................................................................... 26 TABLE 13: ANTENNA REQUIREMENTS .......................................................................................................... 27 TABLE 14: POWER SUPPLY REQUIREMENTS .............................................................................................. 29 TABLE 15: I/O REQUIREMENTS ...................................................................................................................... 30 TABLE 16: EC25 MINI PCIE CONDUCTED RF OUTPUT POWER ................................................................. 30 TABLE 17: EC25-A MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 31 TABLE 18: EC25-J MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 31 TABLE 19: EC25-E MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 32 TABLE 20: EC25-V MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY ................................................ 32 TABLE 21: ESD CHARACTERISTICS OF EC25 MINI PCIE ............................................................................ 33 TABLE 22: CURRENT CONSUMPTION OF EC25-A MINI PCIE ..................................................................... 33 TABLE 23: CURRENT CONSUMPTION OF EC25-E MINI PCIE ..................................................................... 34 TABLE 24: CURRENT CONSUMPTION OF EC25-V MINI PCIE ..................................................................... 37 TABLE 25: GNSS CURRENT CONSUMPTION OF EC25 MINI PCIE SERIES MODULE ............................... 37 TABLE 26: RELATED DOCUMENTS ................................................................................................................ 41 TABLE 27: TERMS AND ABBREVIATIONS ...................................................................................................... 41 EC25_Mini_PCIe_Hardware_Design Confidential / Released 5 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Figure Index FIGURE 1: FUNCTIONAL DIAGRAM ............................................................................................................... 13 FIGURE 2: PIN ASSIGNMENT ......................................................................................................................... 17 FIGURE 3: REFERENCE DESIGN OF POWER SUPPLY ............................................................................... 18 FIGURE 4: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECTOR
........................................................................................................................................................................... 19 FIGURE 5: REFERENCE CIRCUIT OF USB INTERFACE .............................................................................. 20 FIGURE 6: TIMING IN PRIMARY MODE .......................................................................................................... 23 FIGURE 7: TIMING IN AUXILIARY MODE ....................................................................................................... 23 FIGURE 8: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC ...................................... 24 FIGURE 9: RI BEHAVIOR ................................................................................................................................. 25 FIGURE 10: TIMING OF RESETTING MODULE ............................................................................................. 26 FIGURE 11: LED_WWAN# SIGNAL REFERENCE CIRCUIT DIAGRAM ......................................................... 26 FIGURE 12: WAKE# BEHAVIOR ...................................................................................................................... 27 FIGURE 13: DIMENSIONS OF THE RF CONNECTOR (UNIT: MM) ............................................................... 28 FIGURE 14: MECHANICALS OF U.FL-LP CONNECTORS ............................................................................. 28 FIGURE 15: MECHANICAL DIMENSIONS OF EC25 MINI PCIE (UNIT: MM) ................................................. 38 FIGURE 16: STANDARD DIMENSIONS OF MINI PCI EXPRESS (UNIT: MM) ............................................... 39 FIGURE 17: DIMENSIONS OF THE MINI PCI EXPRESS CONNECTOR (MOLEX 679100002, UNIT: MM) .. 40 EC25_Mini_PCIe_Hardware_Design Confidential / Released 6 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 1 Introduction This document defines EC25 Mini PCIe module, and describes its hardware interfaces which are connected with your application as well as its air interfaces. This document can help you to quickly understand the interface specifications, electrical and mechanical details as well as other related information of EC25 Mini PCIe module. To facilitate its application in different fields, relevant reference design documents are also provided. Associated with application note and user guide of EC25 Mini PCIe module, you can use the module to design and set up mobile applications easily. EC25_Mini_PCIe_Hardware_Design Confidential / Released 7 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 1.1. Safety Information The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC25 Mini PCIe module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft. Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are desinged to prevent possible interference with sensitive medical equipment. Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid USIM/SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. EC25_Mini_PCIe_Hardware_Design Confidential / Released 8 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 2 Product Concept 2.1. General Description EC25 Mini PCIe module provides data connectivity on LTE-FDD, LTE-TDD, WCDMA and GSM networks with PCI Express Mini Card 1.2 standard interface. It supports embedded operating systems such as WinCE, Linux, Android, etc., and also provides audio, high-speed data transmission and GNSS functionalities for your applications. EC25 Mini PCIe module can be applied in the following fields:
PDA and Laptop Computer Remote Monitor System Vehicle System Wireless POS System Wireless Router and Switch Other Wireless Terminal Devices This chapter generally introduces the following aspects of EC25 Mini PCIe module:
Product Series Key Features Functional Diagram NOTE Intelligent Meter Reading System EC25 Mini PCIe contains Telematics version and Data-only version. Telematics version supports voice and data functions, while Data-only version only supports data function. EC25_Mini_PCIe_Hardware_Design Confidential / Released 9 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 2.2. Description of Product Series The following table shows the product series of EC25 Mini PCIe module. Table 1: Description of EC25 Mini PCIe Product Series Description Support WCDMA: B2/B4/B5 Support LTE-FDD: B2/B4/B12 Support LTE/WCDMA receive diversity Support GNSS1) Support digital audio2) Support GSM: 850/900/1800/1900MHz Support WCDMA: B1/B2/B5/B8 Support LTE-FDD: B1/B2/B3/B4/B5/B7/B8/B28 Support LTE-TDD: B40 Support LTE/WCDMA receive diversity3) Support GNSS1) Support digital audio2) Support WCDMA: B1/B6/B8/B19 Support LTE-FDD: B1/B3/B8/B18/B19/B26 Support LTE-TDD: B41 Support LTE/WCDMA receive diversity Support GNSS1) Support digital audio2) Support GSM: 900/1800MHz Support WCDMA: B1/B5/B8 Support LTE-FDD: B1/B3/B5/B7/B8/B20 Support LTE-TDD: B38/B40/B41 Support LTE/WCDMA receive diversity Support GNSS1) Support digital audio2) Support LTE-FDD: B4/B13 Support LTE receive diversity Support GNSS1) Support digital audio2) EC25-A Mini PCIe EC25-AU Mini PCIe3) EC25-J Mini PCIe EC25-E Mini PCIe EC25-V Mini PCIe NOTES 1. 2. 1) GNSS function is optional. 2) Digital audio (PCM) function is only supported in Telematics version. EC25_Mini_PCIe_Hardware_Design Confidential / Released 10 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 3. 3) B2 band on EC25-AU Mini PCIe module does not support receive diversity. 2.3. Key Features The following table describes the detailed features of EC25 Mini PCIe module. Table 2: Key Features of EC25 Mini PCIe Feature Details Function Interface Power Supply Transmitting Power LTE Features WCDMA Features GSM Features PCI Express Mini Card 1.2 Standard Interface Supply voltage: 3.0~3.6V Typical supply voltage: 3.3V Class 4 (33dBm2dB) for GSM850 Class 4 (33dBm2dB) for GSM900 Class 1 (30dBm2dB) for DCS1800 Class 1 (30dBm2dB) for PCS1900 Class E2 (27dBm3dB) for GSM850 8-PSK Class E2 (27dBm3dB) for GSM900 8-PSK Class E2 (26dBm3dB) for DCS1800 8-PSK Class E2 (26dBm3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm2dB) for LTE-FDD bands Class 3 (23dBm2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+
Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99:
CSD: 9.6kbps, 14.4kbps GPRS:
Support GPRS multi-slot class 12 (12 by default) Coding scheme: CS-1, CS-2, CS-3 and CS-4 Maximum of four Rx time slots per frame EC25_Mini_PCIe_Hardware_Design Confidential / Released 11 / 46 LTE Module Series EC25 Mini PCIe Hardware Design EDGE:
Support EDGE multi-slot class 12 (12 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) Downlink coding schemes: CS 1-4, MCS 1-9 Uplink coding schemes: CS 1-4, MCS 1-9 Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/
MMS*/FTPS*/SMTPS*/SSL* protocols Support the protocols PAP (Password Authentication Protocol) and CHAP
(Challenge Handshake Authentication Protocol) usually used for PPP connections Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default Support USIM/SIM card: 1.8V, 3.0V Baud rate can reach up to 230400bps, 115200bps by default Used for AT command communication Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression Support 8-bit A-law*, -law* and 16-bit linear data formats Support long frame synchronization and short frame synchronization Support master and slave mode, but must be the master in long frame synchronization Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, firmware upgrade, software debugging, GNSS NMEA output and voice over USB*
USB Driver: Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Windows 10, Linux 2.6 or later, Android 4.0/4.2/4.4/5.0/5.1/6.0 Include main antenna, diversity antenna and GNSS antenna Support LTE/WCDMA Rx-diversity Gen8C Lite of Qualcomm Protocol: NMEA 0183 Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands Size: (51.00.1) (30.00.1) (4.90.2 mm) Weight: approx. 9.8g Internet Protocol Features SMS USIM Interface UART Interface Audio Feature PCM Interface USB Interface Antenna Interface Rx-diversity GNSS Features AT Commands Physical Characteristics EC25_Mini_PCIe_Hardware_Design Confidential / Released 12 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Temperature Range Firmware Upgrade Operation temperature range: -35C ~ +75C1) Extended temperature range: -40C ~ +80C2) USB interface and DFOTA*
RoHS All hardware components are fully compliant with EU RoHS directive NOTES 1. 2. 3.
* means under development. 1) Within operating temperature range, the module is 3GPP compliant. 2) Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction; there are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operating temperature levels, the module is compliant with 3GPP specification again. 2.4. Functional Diagram The following figure shows the block diagram of EC25 Mini PCIe. Figure 1: Functional Diagram EC25_Mini_PCIe_Hardware_Design Confidential / Released 13 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 3 Application Interface 3.1. General Description The physical connections and signal levels of EC25 Mini PCIe comply with PCI Express Mini CEM specifications. This chapter mainly describes the following interfaces definition and application of EC25 Mini PCIe:
Power supply USIM card interface USB interface UART interface PCM&I2C interfaces Control signals Antenna interface 3.2. EC25 Mini PCIe Interface 3.2.1. Definition of Interface The following tables show the pin definition and description of EC25 Mini PCIe on the 52-pin application. Table 3: Definition of I/O Parameters Type IO DI DO OC PI PO Description Bidirectional Digital input Digital output Open collector Power input Power output EC25_Mini_PCIe_Hardware_Design Confidential / Released 14 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Table 4: Description of Pins Pin No. Mini PCI Express Standard Name EC25 Mini PCIe Pin Name I/O Description Comment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 OC PI Output signal can be used to wake up the host. 3.3V DC supply WAKE#
3.3Vaux COEX1 GND COEX2 1.5V WAKE#
VCC_3V3 RESERVED GND RESERVED NC CLKREQ#
RESERVED UIM_PWR USIM_VDD PO GND GND UIM_DATA USIM_DATA REFCLK-
UART_RX UIM_CLK USIM_CLK REFCLK+
UART_TX UIM_RESET USIM_RST GND GND UIM_VPP RESERVED RESERVED RI GND GND RESERVED RESERVED W_DISABLE#
W_DISABLE#
GND PERST#
PERn0 GND PERST#
UART_CTS IO DI DO DO DO DO DI DI DI Connect to DTEs TX Connect to DTEs RX Reserved Mini card ground Reserved Reserved Power source for the USIM card Mini card ground USIM data signal UART receive data USIM clock signal UART transmit data USIM reset signal Mini card ground Reserved Output signal can be used to wake up the host. Mini card ground Reserved Disable wireless communications Mini card ground Pull-up by default Active low Functional reset to the card Active low Connect to DTEs RTS UART clear to send EC25_Mini_PCIe_Hardware_Design Confidential / Released 15 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 3.3Vaux PERp0 GND GND 1.5V GND RESERVED Reserved UART_RTS DO UART request to send GND GND NC GND Mini card ground Mini card ground Mini card ground SMB_CLK I2C_SCL DO I2C serial clock PETn0 DTR DI Sleep mode control SMB_DATA I2C_SDA IO I2C serial data PETp0 GND GND USB_D-
GND USB_D+
3.3Vaux GND 3.3Vaux RESERVED GND GND USB_DM GND USB_DP VCC_3V3 GND VCC_3V3 IO IO PI PI LED_WWAN#
LED_WWAN#
OC GND GND LED_WLAN#
RESERVED RESERVED PCM_CLK*
LED_WPAN#
RESERVED IO Reserved Mini card ground Mini card ground USB differential data (-) Mini card ground USB differential data (+) 3.3V DC supply Mini card ground 3.3V DC supply Active-low. LED signal for indicating the state of the card. Mini card ground Reserved PCM clock signal Reserved RESERVED PCM_DOUT*
DO PCM data output Connect to DTEs CTS Require external pull-up to 1.8V. Require external pull-up to 1.8V. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 EC25_Mini_PCIe_Hardware_Design Confidential / Released 16 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 1.5V NC RESERVED PCM_DIN*
GND GND RESERVED PCM_SYNC*
3.3Vaux VCC_3V3 DI IO PI PCM data input Mini card ground PCM frame synchronization 3.3V DC supply 48 49 50 51 52 NOTES 1. Keep all NC, reserved and unused pins unconnected. 2.
* means the digital audio (PCM) function is only supported on Telematics version. 3.2.2. Pin Assignment The following figure shows the pin assignment of EC25 Mini PCIe module. The top side contains EC25 module and antenna connectors. PIN1 PIN2 TOP BOT PIN51 PIN52 Figure 2: Pin Assignment EC25_Mini_PCIe_Hardware_Design Confidential / Released 17 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 3.3. Power Supply The following table shows pin definition of VCC_3V3 pins and ground pins. Table 5: Definition of VCC_3V3 and GND Pins Pin No. Pin Name I/O Power Domain Description 2, 39, 41, 52 VCC_3V3 PI 3.0~3.6V 3.3V DC supply GND Mini card ground 4, 9, 15, 18, 21, 26, 27, 29, 34, 35, 37, 40, 43, 50 The typical supply voltage of EC25 Mini PCIe is 3.3V. In the 2G networks, the input peak current may reach to 2.7A during the transmitting time. Therefore, the power supply must be able to provide enough current, and a bypass capacitor of no less than 470F with low ESR should be used to prevent the voltage from dropping. The following figure shows a reference design of power supply. The precision of resistor R2 and R3 is 1%, and the capacitor C3 needs a low ESR. Figure 3: Reference Design of Power Supply EC25_Mini_PCIe_Hardware_Design Confidential / Released 18 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 3.4. USIM Card Interface The following table shows the pin definition of USIM card interface. Table 6: USIM Pin Definition Pin No. Pin Name I/O Power Domain Description 8 10 12 14 USIM_VDD PO 1.8V/3.0V Power source for the USIM card USIM_DATA USIM_CLK IO DO 1.8V/3.0V 1.8V/3.0V USIM data signal USIM clock signal USIM_RST DO 1.8V/3.0V USIM reset signal EC25 Mini PCIe supports 1.8V and 3.0V USIM cards. The following figure shows a reference design for a 6-pin USIM card connector. Figure 4: Reference Circuit of USIM Card Interface with a 6-Pin USIM Card Connector In order to enhance the reliability and availability of the USIM card in your application, please follow the criteria below in USIM circuit design:
Keep layout of USIM card as close to the module as possible. Keep the trace length as less than 200mm as possible. Keep USIM card signal away from RF and power supply traces. Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential. The decouple capacitor of USIM_VDD should be less than 1uF and must near to USIM card connector. EC25_Mini_PCIe_Hardware_Design Confidential / Released 19 / 46 LTE Module Series EC25 Mini PCIe Hardware Design To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. In order to offer good ESD protection, it is recommended to add a TVS whose parasitic capacitance should not be more than 50pF. The 22 ohm resistors should be added in series between the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD protection. The 33pF capacitors are used for filtering interference of GSM900. Please note that the USIM peripheral circuit should be close to the USIM card connector. The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the USIM card connector. 3.5. USB Interface The following table shows the pin definition of USB interface. Table 7: Pin Definition of USB Interface Pin No. Pin Name I/O Description Comment 36 38 USB_DM USB_DP IO IO USB differential data (-) Require differential impedance of 90 USB differential data (+) Require differential impedance of 90 EC25 Mini PCIe is compliant with USB 2.0 specification. It can only be used as a slave device. Meanwhile, it supports high speed (480Mbps) mode and full speed (12Mbps) mode. The USB interface is used for AT command communication, data transmission, GNSS NMEA output, software debugging, firmware upgrade and voice over USB*. The following figure shows a reference circuit of USB interface. Figure 5: Reference Circuit of USB Interface EC25_Mini_PCIe_Hardware_Design Confidential / Released 20 / 46 LTE Module Series EC25 Mini PCIe Hardware Design In order to ensure the integrity of USB data line signal, components R1, R2, R3 and R4 must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible. In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply with the following principles:
It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90 ohm. Do not route signal traces under crystals, oscillators, magnetic devices or RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides. If USB connector is used, please keep the ESD protection components to the USB connector as close as possible. Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF. Keep traces of USB data test points short to avoid noise coupled on USB data lines. If possible, reserve a 0R resistor on these two lines. NOTES 1. There are three preconditions when enabling EC25 Mini PCIe to enter into the sleep mode:
a) Execute AT+QSCLK=1 command to enable the sleep mode. Please refer to document [2] for details. b) DTR pin should be kept in high level (pull-up internally). c) USB interface on Mini PCIe must be connected with the USB interface of the host and please guarantee the USB of the host is in suspended state.
* means under development. 2. 3.6. UART Interface The following table shows the pin definition of the UART interface. Table 8: Pin Definition of the UART Interface Pin No. EC25 Mini PCIe Pin Name I/O Power Domain Description 11 13 23 25 UART_RX UART_TX UART_CTS UART_RTS DI 3.3V DO 3.3V DI DO 3.3V 3.3V UART receive data UART transmit data UART clear to send UART request to send EC25_Mini_PCIe_Hardware_Design Confidential / Released 21 / 46 LTE Module Series EC25 Mini PCIe Hardware Design The UART interface supports 9600, 19200, 38400, 57600, 115200 and 230400bps baud rate. The default is 115200bps. This interface can be used for AT command communication. NOTE AT+IPR command can be used to set the baud rate of the UART, and AT+IFC command can be used to set the hardware flow control (hardware flow control is disabled by default). Please refer to document [2]
for details. 3.7. PCM and I2C Interfaces The following table shows the pin definition of PCM and 12C interfaces that can be applied in audio codec design. Table 9: Pin Definition of PCM and I2C Interfaces Pin No. Pin Name 45 47 49 51 30 32 PCM_CLK PCM_DOUT PCM_DIN PCM_SYNC I2C_SCL I2C_SDA I/O IO DO DI IO DO IO Power Domain Description 1.8V 1.8V 1.8V 1.8V 1.8V 1.8V PCM clock signal PCM data output PCM data input PCM frame synchronization I2C serial clock, require external pull-up to 1.8V. I2C serial data, require external pull-up to 1.8V. EC25 Mini PCIe provides one PCM digital interface, which supports 8-bit A-law* and -law*, and also supports 16-bit linear data formats and the following modes:
Primary mode (short frame synchronization, works as either master or slave) Auxiliary mode (long frame synchronization, works as master only) NOTE
* means under development. EC25_Mini_PCIe_Hardware_Design Confidential / Released 22 / 46 LTE Module Series EC25 Mini PCIe Hardware Design In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports 128, 256, 512, 1024 and 2048kHz for different speed codecs. The following figure shows the timing relationship in primary mode with 8kHz PCM_SYNC and 2048kHz PCM_CLK. Figure 6: Timing in Primary Mode In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge; while the PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only. The following figure shows the timing relationship in auxiliary mode with 8kHz PCM_SYNC and 128kHz PCM_CLK. Figure 7: Timing in Auxiliary Mode EC25_Mini_PCIe_Hardware_Design Confidential / Released 23 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. In addition, EC25 Mini PCIes firmware has integrated the configuration on some PCM codecs application with I2C interface. Please refer to document [2] for details about AT+QDAI command. The following figure shows a reference design of PCM interface with an external codec IC. Figure 8: Reference Circuit of PCM Application with Audio Codec 3.8. Control Signals The following table shows the pin definition of control signals. Table 10: Pin Definition of Control Signals Pin No. Pin Name Power Domain Description RI DTR I/O DO DI 3.3V 3.3V W_DISABLE#
DI 3.3V Output signal can be used to wake up the host. Sleep mode control Disable wireless communications;
pull-up by default, active low. PERST#
DI 3.3V Functional reset to the card; active low. LED_WWAN#
OC WAKE#
OC Active-low. LED signal for indicating the state of the module. Output signal can be used to wake up the host. 17 31 20 22 42 1 EC25_Mini_PCIe_Hardware_Design Confidential / Released 24 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 3.8.1. RI Signal The RI signal can be used to wake up the host. When URC returns, there will be the following behavior on the RI pin after executing AT+QCFG=risignaltype,physical command. Figure 9: RI Behavior 3.8.2. DTR Signal The DTR signal supports sleep control function. Driving it to low level will wake up the module. 3.8.3. W_DISABLE# Signal EC25 Mini PCIe provides W_DISABLE# signal to disable wireless communications through hardware operation. The following table shows the radio operational states of the module. Please refer to document [2] for related AT commands. Table 11: Radio Operational States W_DISABLE#
AT Commands Radio Operation High Level High Level Low Level 3.8.4. PERST# Signal AT+CFUN=1 AT+CFUN=0 AT+CFUN=4 AT+CFUN=0 AT+CFUN=1 AT+CFUN=4 Enabled Disabled Disabled The PERST# signal can be used to force a hardware reset on the card. You can reset the module by driving the PERST# to a low level voltage with the time frame of 150~460ms and then releasing it. The reset scenario is illustrated in the following figure. EC25_Mini_PCIe_Hardware_Design Confidential / Released 25 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Figure 10: Timing of Resetting Module 3.8.5. LED_WWAN# Signal The LED_WWAN# signal of EC25 Mini PCIe is used to indicate the network status of the module, which can absorb the current up to 40mA. According to the following circuit, in order to reduce the current of the LED, a resistor must be placed in series with the LED. The LED is emitting light when the LED_WWAN#
output signal is active low. Figure 11: LED_WWAN# Signal Reference Circuit Diagram The following table shows the network status indications of the LED_WWAN# signal. Table 12: Indications of Network Status LED_WWAN#
Description Low Level (Light on) Registered on network High-impedance (Light off) No network coverage or not registered W_DISABLE# signal is at low level. (Disable the RF) AT+CFUN=0, AT+CFUN=4 EC25_Mini_PCIe_Hardware_Design Confidential / Released 26 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 3.8.6. WAKE# Signal The WAKE# signal is an open collector signal which is similar to RI signal, but a host pull-up resistor and AT+QCFG=risignaltype,physical command are required. When URC returns, there will be 120ms low level pulse output as below. Figure 12: WAKE# Behavior 3.9. Antenna Interfaces EC25 Mini PCIe antenna interfaces include a main antenna interface, an Rx-diversity antenna interface and a GNSS antenna interface. And Rx-diversity function is enabled by default. The following table shows the requirement on main antenna, Rx-diversity antenna and GNSS antenna. Table 13: Antenna Requirements Type GNSS GSM/WCDMA/LTE Requirements Frequency range: 1561~1615MHz Polarization: RHCP or linear VSWR: <2 (Typ.) Passive antenna gain: >0dBi VSWR: 2 Gain (dBi): 1 Max Input Power (W): 50 Input Impedance (ohm): 50 Polarization Type: Vertical Cable Insertion Loss: <1dB
(GSM900, WCDMA B5/B8, LTE B5/B8/B12/B17/B20) Cable Insertion Loss: <1.5dB
(GSM1800, WCDMA B1/B2/B3/B4, LTE B1/B2/B3/B4) Cable insertion loss: <2dB
(LTE B7/B38/B40/B41) EC25_Mini_PCIe_Hardware_Design Confidential / Released 27 / 46 LTE Module Series EC25 Mini PCIe Hardware Design The following figure shows the overall sizes of RF connector. Figure 13: Dimensions of the RF Connector (Unit: mm) U.FL-LP serial connectors listed in the following figure can be used to match the RF connector. Figure 14: Mechanicals of U.FL-LP Connectors EC25_Mini_PCIe_Hardware_Design Confidential / Released 28 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 4 Electrical and Radio Characteristics 4.1. General Description This chapter mainly describes the following electrical and radio characteristics of EC25 Mini PCIe:
Power supply requirements Current consumption RF characteristics GNSS receiver ESD characteristics I/O requirements 4.2. Power Supply Requirements The input voltage of EC25 Mini PCIe is 3.3V9%, as specified by PCI Express Mini CEM Specifications 1.2. The following table shows the power supply requirements of EC25 Mini PCIe. Table 14: Power Supply Requirements Parameter Description VCC_3V3 Power Supply Min. 3.0 Typ. 3.3 Max. 3.6 Unit V EC25_Mini_PCIe_Hardware_Design Confidential / Released 29 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 4.3. I/O Requirements The following table shows the I/O requirements of EC25 Mini PCIe. Table 15: I/O Requirements Parameter Description Min. Max. Unit Input High Voltage 0.7 VCC_3V3 VCC_3V3+0.3 Input Low Voltage
-0.3 0.3 VCC_3V3 Output High Voltage VCC_3V3-0.5 VCC_3V3 Output Low Voltage 0 0.4 V V V V VIH VIL VOH VOL NOTES 1. The PCM and I2C interfaces belong to 1.8V power domain and other I/O interfaces belong to VCC_3V3 power domain. 2. The maximum voltage value of VIL for PERST# signal and W_DISABLE# signal is 0.5V. 4.4. RF Characteristics The following tables show the conducted RF output power and receiving sensitivity of EC25 Mini PCIe module. Table 16: EC25 Mini PCIe Conducted RF Output Power Frequency GSM850/GSM900 DCS1800/PCS1900 GSM850/GSM900 (8-PSK) DCS1800/PCS1900 (8-PSK) WCDMA bands LTE-FDD bands Max. 33dBm2dB 30dBm2dB 27dBm3dB 26dBm3dB 24dBm+1/-3dB 23dBm2dB Min. 5dBm5dB 0dBm5dB 5dBm5dB 0dBm5dB
<-50dBm
<-44dBm EC25_Mini_PCIe_Hardware_Design Confidential / Released 30 / 46 LTE Module Series EC25 Mini PCIe Hardware Design LTE-TDD bands 23dBm2dB
<-44dBm Table 17: EC25-A Mini PCIe Conducted RF Receiving Sensitivity Frequency WCDMA B2 WCDMA B4 WCDMA B5 Primary Diversity SIMO 3GPP (SIMO)
-110.0dBm
-110.0dBm
-110.5dBm
/
/
/
/
/
/
-104.7dBm
-106.7dBm
-104.7dBm LTE FDD B2 (10M)
-98.0dBm
-98.0dBm
-101.0dBm
-94.3dBm LTE FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm LTE FDD B12 (10M)
-96.5dBm
-98.0dBm
-101.0dBm
-93.3dBm Table 18: EC25-J Mini PCIe Conducted RF Receiving Sensitivity Frequency WCDMA B1 WCDMA B6 WCDMA B8 Primary Diversity SIMO 3GPP (SIMO)
-110.0dBm
-110.5dBm
-110.5dBm
/
/
/
/
/
/
/
/
-106.7dBm
-106.7dBm
-106.7dBm
-106.7dBm WCDMA B19
-110.5dBm LTE-FDD B1 (10M)
-97.5dBm LTE-FDD B3 (10M)
-96.5dBm
-98.7dBm
-97.1dBm
-100.2dBm
-96.3dBm
-100.5dBm
-93.3dBm LTE-FDD B8 (10M)
-98.4dBm
-99.0dBm
-101.2dBm
-93.3dBm LTE-FDD B18 (10M)
-99.5dBm LTE-FDD B19 (10M)
-99.2dBm
-99.0dBm
-99.0dBm
-101.7dBm
-96.3dBm
-101.4dBm
-96.3dBm LTE-FDD B26 (10M)
-99.5dBm
-99.0dBm
-101.5dBm
-93.8dBm LTE-TDD B41 (10M)
-95.0dBm
-95.7dBm
-99.0dBm
-94.3dBm EC25_Mini_PCIe_Hardware_Design Confidential / Released 31 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Table 19: EC25-E Mini PCIe Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO 3GPP (SIMO) GSM900 DCS1800 WCDMA B1 WCDMA B5 WCDMA B8
-109.0dBm
-109.0dBm
-110.5dBm
-110.5dBm
-110.5dBm
/
/
/
/
/
/
/
/
/
/
-102.0dBm
-102.0dbm
-106.7dBm
-104.7dBm
-103.7dBm LTE-FDD B1 (10M)
-98.0dBm LTE-FDD B3 (10M)
-96.5dBm
-98.0dBm
-98.5dBm
-101.5dBm
-96.3dBm
-101.5dBm
-93.3dBm LTE-FDD B5 (10M)
-98.0dBm
-98.5dBm
-101.0dBm
-94.3dBm LTE-FDD B7 (10M)
-97.0dBm LTE-FDD B8 (10M)
-97.0dBm
-94.5dBm
-97.0dBm
-99.5dBm
-94.3dBm
-101.0dBm
-93.3dBm LTE-FDD B20 (10M)
-97.5dBm
-99.0dBm
-102.5dBm
-93.3dBm LTE-TDD B38 (10M)
-96.7dBm LTE-TDD B40 (10M)
-96.3dBm
-97.0dBm
-98.0dBm
-100.0dBm
-96.3dBm
-101.0dBm
-96.3dBm LTE-TDD B41 (10M)
-95.2dBm
-95.7dBm
-99.0dBm
-94.3dBm Table 20: EC25-V Mini PCIe Conducted RF Receiving Sensitivity Frequency Primary Diversity SIMO 3GPP (SIMO) LTE-FDD B4 (10M)
-97.5dBm
-99.0dBm
-101.0dBm
-96.3dBm LTE-FDD B13 (10M)
-95.0dBm
-97.0dBm
-100.0dBm
-93.3dBm 4.5. GNSS Receiver EC25 Mini PCIe integrates a GNSS receiver that supports IZat Gen 8C Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo, QZSS). Meanwhile, it supports Qualcomm gpsOneXTRA technology (one kind of A-GNSS). This technology will download XTRA file from the internet server to enhance the TTFF. EC25_Mini_PCIe_Hardware_Design Confidential / Released 32 / 46 LTE Module Series EC25 Mini PCIe Hardware Design XTRA file contains predicted GPS and GLONASS satellites coordinates and clock biases valid for up to 7 days. It is best if XTRA file is downloaded every 1-2 days. Additionally, EC25 Mini PCIe can support standard NMEA-0183 protocol and output NMEA messages with 1Hz via USB NMEA interface. EC25 Mini PCIe GNSS engine is switched off by default. You must switch on it by AT command. Please refer to document [3] for more details about GNSS engine technology and configurations. A passive antenna should be used for the GNSS engine. 4.6. ESD Characteristics The following table shows the ESD characteristics of EC25 Mini PCIe. Table 21: ESD Characteristics of EC25 Mini PCIe Part Contact Discharge Air Discharge Unit Power Supply and GND Antenna Interface USB Interface USIM Interface Others
+/-5
+/-4
+/-4
+/-4
+/-0.5
+/-10
+/-8
+/-8
+/-8
+/-1 kV kV kV kV kV 4.7. Current Consumption The following tables describe the current consumption of EC25 Mini PCIe series module. Table 22: Current Consumption of EC25-A Mini PCIe Parameter Description Conditions Typ. Unit IVBAT Sleep state AT+CFUN=0 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) 3.6 4.4 3.8 5.9 mA mA mA mA EC25_Mini_PCIe_Hardware_Design Confidential / Released 33 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Idle state LTE-FDD PF=128 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) WCDMA B2 HSDPA @22.63dBm WCDMA B2 HSUPA @23.19dBm WCDMA data transfer
(GNSS OFF) WCDMA B4 HSDPA @22.45dBm WCDMA B4 HSUPA @22.57dBm WCDMA B5 HSDPA @22.49dBm WCDMA B5 HSUPA @22.43dBm LTE data transfer
(GNSS OFF) WCDMA voice call LTE-FDD B2 @22.92dBm LTE-FDD B4 @23.42dBm LTE-FDD B12 @23.39dBm WCDMA B2 @23.59dBm WCDMA B4 @23.47dBm WCDMA B5 @23.46dBm 4.8 27.0 40.0 43.0 59.0 764.0 741.0 745.0 752.0 616.0 637.0 977.0 1094.0 847.0 861.0 812.0 683.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA Table 23: Current Consumption of EC25-E Mini PCIe Parameter Description Conditions Typ. Unit IVBAT Sleep state AT+CFUN=0 (USB disconnected) GSM DRX=2 (USB disconnected) GSM DRX=9 (USB disconnected) WCDMA PF=64 (USB disconnected) WCDMA PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) 3.9 5.1 4.3 5.5 4.8 5.8 mA mA mA mA mA mA EC25_Mini_PCIe_Hardware_Design Confidential / Released 34 / 46 LTE Module Series EC25 Mini PCIe Hardware Design LTE-FDD PF=128 (USB disconnected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=128 (USB disconnected) GSM DRX=5 (USB disconnected) GSM DRX=5 (USB connected) WCDMA PF=64 (USB disconnected) WCDMA PF=64 (USB connected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE-TDD PF=64 (USB disconnected) LTE-TDD PF=64 (USB connected) GSM900 4DL/1UL @33.08dBm GSM900 3DL/2UL @31.03dBm GSM900 2DL/3UL @29.86dBm GSM900 1DL/4UL @29.44dBm DCS1800 4DL/1UL @30.39dBm DCS1800 3DL/2UL @30.19dBm DCS1800 2DL/3UL @30.02dBm DCS1800 1DL/4UL @29.86dBm GSM900 4DL/1UL @27.59dBm GSM900 3DL/2UL @27.45dBm Idle state GPRS data transfer
(GNSS OFF) EDGE data transfer
(GNSS OFF) GSM900 2DL/3UL @27.31dBm GSM900 1DL/4UL @27.14dBm DCS1800 4DL/1UL @26.24dBm DCS1800 3DL/2UL @26.13dBm 5.0 5.8 4.9 30.0 43.0 31.0 45.0 31.0 44.0 32.0 44.0 372.0 626.0 706.0 767.0 262.0 417.0 564.0 709.0 233.0 370.0 500.0 623.0 224.0 334.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC25_Mini_PCIe_Hardware_Design Confidential / Released 35 / 46 LTE Module Series EC25 Mini PCIe Hardware Design DCS1800 2DL/3UL @25.97dBm DCS1800 1DL/4UL @25.82dBm WCDMA B1 HSDPA @22.49dBm WCDMA B1 HSUPA @21.87dBm WCDMA data transfer
(GNSS OFF) WCDMA B5 HSDPA @22.66dBm WCDMA B5 HSUPA @21.99dBm WCDMA B8 HSDPA @22.23dBm WCDMA B8 HSUPA @21.68dBm LTE data transfer
(GNSS OFF) LTE-FDD B1 @23.12dBm LTE-FDD B3 @22.75dBm LTE-FDD B5 @22.92dBm LTE-FDD B7 @23.42dBm LTE-FDD B8 @22.97dBm LTE-FDD B20 @22.51dBm LTE-TDD B38 @22.58dBm LTE-TDD B40 @22.31dBm LTE-TDD B41 @22.03dBm GSM voice call WCDMA voice call GSM900 PCL=5 @33.31dBm DCS1800 PCL=0 @20.48dBm WCDMA B1 @23.18dBm WCDMA B5 @22.62dBm WCDMA B8 @23.02dBm 440.0 553.0 798.0 788.0 781.0 770.0 655.0 659.0 940.0 989.0 962.0 1188.0 911.0 946.0 686.0 576.0 611.0 367.0 248.0 868.0 808.0 728.0 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EC25_Mini_PCIe_Hardware_Design Confidential / Released 36 / 46 LTE Module Series EC25 Mini PCIe Hardware Design Table 24: Current Consumption of EC25-V Mini PCIe Parameter Description Conditions Typ. Unit AT+CFUN=0 (USB disconnected) Sleep state LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=128 (USB disconnected) LTE-FDD PF=64 (USB disconnected) LTE-FDD PF=64 (USB connected) LTE-FDD B4 @23.3dBm LTE-FDD B13 @22.13dBm Idle state LTE data transfer
(GNSS OFF) IVBAT Table 25: GNSS Current Consumption of EC25 Mini PCIe Series Module Parameter Description Conditions Searching
(AT+CFUN=0) Cold start @Passive Antenna Lost state @Passive Antenna Tracking
(AT+CFUN=0) Instrument environment Open Sky @Passive Antenna Open Sky @Active Antenna IVBAT
(GNSS) 3.4 4.8 4.3 30.0 42.0 873.0 638.0 Typ. 75.0 74.0 44.0 53.0 58.0 mA mA mA mA mA mA mA Unit mA mA mA mA mA EC25_Mini_PCIe_Hardware_Design Confidential / Released 37 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 5 Dimensions and Packaging 5.1. General Description This chapter mainly describes mechanical dimensions as well as packaging specification of EC25 Mini PCIe module. 5.2. Mechanical Dimensions of EC25 Mini PCIe 8.250.10 5.450.10 6.380.10 6.350.10 34.300.20 30.000.20 24.200.20 3x3.00 5.980.10 2x2.60 0.61 2.350.10 48.050.20 50.950.20 1.40 4.900.20 9.900.10 4.000.10 Pin1 Pin51 Top View 10.350.10 7.260.10 1.00 Side View Figure 15: Mechanical Dimensions of EC25 Mini PCIe (Unit: mm) EC25_Mini_PCIe_Hardware_Design Confidential / Released 38 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 5.3. Standard Dimensions of Mini PCI Express The following figure shows the standard dimensions of Mini PCI Express. Please refer to document [1]
for detailed A and B. Figure 16: Standard Dimensions of Mini PCI Express (Unit: mm) EC25_Mini_PCIe_Hardware_Design Confidential / Released 39 / 46 LTE Module Series EC25 Mini PCIe Hardware Design EC25 Mini PCIe adopts a standard Mini PCI Express connector which compiles with the directives and standards listed in the document [1]. The following figure takes the Molex 679100002 as an example. Figure 17: Dimensions of the Mini PCI Express Connector (Molex 679100002, Unit: mm) 5.4. Packaging Specification The EC25 Mini PCIe is packaged in a tray. Each tray contains 10pcs of modules. The smallest package of EC25 Mini PCIe contains 100pcs. EC25_Mini_PCIe_Hardware_Design Confidential / Released 40 / 46 LTE Module Series EC25 Mini PCIe Hardware Design 6 Appendix References Table 26: Related Documents SN Document Name Remark PCI Express Mini Card Electromechanical Specification Revision 1.2 Mini PCI Express Specification Quectel_EC25&EC21_AT_Commands_Manual EC25 and EC21 AT Commands Manual Quectel_EC25&EC21_GNSS_AT_Commands_ Manual EC25 and EC21 GNSS AT Commands Manual
[1]
[2]
[3]
Table 27: Terms and Abbreviations Abbreviation Description AMR bps CS DC-HSPA+
DFOTA DL EFR ESD FDD FR GLONASS GMSK Adaptive Multi-rate Bits Per Second Coding Scheme Dual-carrier High Speed Packet Access Delta Firmware Upgrade Over The Air Down Link Enhanced Full Rate Electrostatic Discharge Frequency Division Duplexing Full Rate GLObalnaya Navigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System Gaussian Minimum Shift Keying EC25_Mini_PCIe_Hardware_Design Confidential / Released 41 / 46 LTE Module Series EC25 Mini PCIe Hardware Design GNSS GPS GSM HR kbps LED LTE Mbps ME MIMO MMS MO MT PCM PDU PPP RF Rx USIM SIMO SMS UART UL URC WCDMA Global Navigation Satellite System Global Positioning System Global System for Mobile Communications Half Rate Kilo Bits Per Second Light Emitting Diode Long-Term Evolution Million Bits Per Second Mobile Equipment (Module) Multiple-Input Multiple-Output Multimedia Messaging Service Mobile Originated Mobile Terminated Pulse Code Modulation Protocol Data Unit Point-to-Point Protocol Radio Frequency Receive Universal Subscriber Identification Module Single Input Multiple Output Short Message Service Universal Asynchronous Receiver & Transmitter Up Link Unsolicited Result Code Wideband Code Division Multiple Access EC25_Mini_PCIe_Hardware_Design Confidential / Released 42 / 46 LTE Module Series EC25 Mini PCIe Hardware Design FCC Certification Requirements. According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device. And the following conditions must be met:
1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-
averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091. 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the users body and must not transmit simultaneously with any other antenna or transmitter. 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201808EC25AF. 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:
WCDMA B2/LTE B2: <8dBi WCDMA B4LTE B4/B66: <5dBi WCDMA B5/LTE B5: <9.416dBi LTE B14: <9.255dBi LTE B13: <9.173dBi LTE B12: <8.734dBi LTE B71: <8.545dBi 5. This module must not transmit simultaneously with any other antenna or transmitter 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines. For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093 EC25_Mini_PCIe_Hardware_Design Confidential / Released 43 / 46 LTE Module Series EC25 Mini PCIe Hardware Design If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations. For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:
A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph). For a host using a certified modular with a standard fixed label, if (1) the modules FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible;
then an additional permanent label referring to the enclosed module:Contains Transmitter Module FCC ID: XMR201808EC25AF or Contains FCC ID: XMR201808EC25AF must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID. The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:
EC25_Mini_PCIe_Hardware_Design Confidential / Released 44 / 46 LTE Module Series EC25 Mini PCIe Hardware Design
(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the users authority to operate the equipment. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements. IC Statement IRSS-GEN
"This device complies with Industry Canadas licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device." or "Le prsent appareil est conforme aux CNR dIndustrie Canada applicables aux appareils radio exempts de licence. Lexploitation est autorise aux deux conditions suivantes :
1) lappareil ne doit pas produire de brouillage; 2) lutilisateur de lappareil doit accepter tout brouillage radiolectrique subi, mme si le brouillage est susceptible den compromettre le fonctionnement."
Dclaration sur l'exposition aux rayonnements RF L'autre utilis pour l'metteur doit tre install pour fournir une distance de sparation d'au moins 20 cm de toutes les personnes et ne doit pas tre colocalis ou fonctionner conjointement avec une autre antenne ou un autre metteur. The host product shall be properly labeled to identify the modules within the host product. The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labeled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word Contains or similar wording expressing the same meaning, as follows:
Contains IC: 10224A-2018EC25AF or where: 10224A-2018EC25AF is the modules certification number. Le produit hte doit tre correctement tiquet pour identifier les modules dans le produit hte. EC25_Mini_PCIe_Hardware_Design Confidential / Released 45 / 46 LTE Module Series EC25 Mini PCIe Hardware Design L'tiquette de certification d'Innovation, Sciences et Dveloppement conomique Canada d'un module doit tre clairement visible en tout temps lorsqu'il est installdans le produit hte; sinon, le produit hte doit porter une tiquette indiquant le numro de certification d'Innovation, Sciences et Dveloppement conomique Canada pour le module, prcd du mot Contient ou d'un libell semblable exprimant la mme signification, comme suit:
"Contient IC: 10224A-2018EC25AF" ou "o: 10224A-2018EC25AF est le numro de certification du module". EC25_Mini_PCIe_Hardware_Design Confidential / Released 46 / 46
1 2 | Cover letter | Cover Letter(s) | 148.91 KiB | March 08 2021 |
Quectel Wireless Solutions Company Limited Federal Communications Commission 7345 Oakland Mills Road Columbia MD 21046 SUBJECT: Request for Class II Permissive Change for FCC ID: XMR201808EC25AF The product, LTE Module, has been granted by FCC dated 08/03/2018, FCC ID:
XMR201808EC25AF. Pursuant to 2.1043, we, Quectel Wireless Solutions Company Limited, would like to modify the authorized equipment for below changes:
1. It is used in a Body Worn Camera, whose model name is BioAX and that is manufactured by Audax Global Solutions Ltd. 2. Antenna, FPC antenna used in the new application. While dipole antenna used in the original application 3. WCDMA Band II, WCDMA Band IV and LTE Band 14 not enable by the software 4. SAR measurement was done and a report was submitted. Except for the changes above, no other modification is performed. There is no hardware or electrical modification made to the applying transmitter itself. We would like to certify the additional of certified FCC ID: XMR201808EC25AF as a Class II Permissive Change in this device. Thank you for your attention in this matter. Sincerely, Signatory Name: Jean Hu Tel.: 86-21-50791141 Company: Quectel Wireless Solutions Company Limited
frequency | equipment class | purpose | ||
---|---|---|---|---|
1 | 2021-03-08 | 1860 ~ 1900 | PCB - PCS Licensed Transmitter | Class II Permissive Change |
2 | 2018-08-03 | 1860 ~ 1900 | PCB - PCS Licensed Transmitter | Original Equipment |
app s | Applicant Information | |||||
---|---|---|---|---|---|---|
1 2 | Effective |
2021-03-08
|
||||
1 2 |
2018-08-03
|
|||||
1 2 | Applicant's complete, legal business name |
Quectel Wireless Solutions Company Limited
|
||||
1 2 | FCC Registration Number (FRN) |
0018988279
|
||||
1 2 | Physical Address |
Building 5, Shanghai Business Park PhaseIII (Area B),No.1016 Tianlin Road, Minhang District
|
||||
1 2 |
Building 5, Shanghai Business Park PhaseIII
|
|||||
1 2 |
Shanghai, N/A
|
|||||
1 2 |
Shanghai, N/A 200233
|
|||||
1 2 |
China
|
|||||
app s | TCB Information | |||||
1 2 | TCB Application Email Address |
D******@compliancetesting.com
|
||||
1 2 |
c******@telefication.com
|
|||||
1 2 | TCB Scope |
B1: Commercial mobile radio services equipment in the following 47 CFR Parts 20, 22 (cellular), 24,25 (below 3 GHz) & 27
|
||||
app s | FCC ID | |||||
1 2 | Grantee Code |
XMR
|
||||
1 2 | Equipment Product Code |
201808EC25AF
|
||||
app s | Person at the applicant's address to receive grant or for contact | |||||
1 2 | Name |
J******** H******
|
||||
1 2 |
J****** x****
|
|||||
1 2 | Telephone Number |
+8602******** Extension:
|
||||
1 2 | Fax Number |
+8621********
|
||||
1 2 |
j******@quectel.com
|
|||||
1 2 |
j******@quectel.com
|
|||||
app s | Technical Contact | |||||
1 2 | Firm Name |
TA Technology(Shanghai) Company Limited
|
||||
1 2 | Name |
K**** X******
|
||||
1 2 | Physical Address |
No.145,Jintang Rd,Tangzhen
|
||||
1 2 |
Shanghai
|
|||||
1 2 |
China
|
|||||
1 2 | Telephone Number |
86-21********
|
||||
1 2 | Fax Number |
86-21********
|
||||
1 2 |
x******@ta-shanghai.com
|
|||||
app s | Non Technical Contact | |||||
1 2 | Firm Name |
TA Technology(Shanghai) Company Limited
|
||||
1 2 | Name |
J**** H******
|
||||
1 2 | Physical Address |
No.145,Jintang Rd,Tangzhen
|
||||
1 2 |
Shanghai
|
|||||
1 2 |
China
|
|||||
1 2 | Telephone Number |
86-21********
|
||||
1 2 | Fax Number |
86-21********
|
||||
1 2 |
h******@ta-shanghai.com
|
|||||
app s | Confidentiality (long or short term) | |||||
1 2 | Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | Yes | ||||
1 2 | Long-Term Confidentiality Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | No | ||||
if no date is supplied, the release date will be set to 45 calendar days past the date of grant. | ||||||
app s | Cognitive Radio & Software Defined Radio, Class, etc | |||||
1 2 | Is this application for software defined/cognitive radio authorization? | No | ||||
1 2 | Equipment Class | PCB - PCS Licensed Transmitter | ||||
1 2 | Description of product as it is marketed: (NOTE: This text will appear below the equipment class on the grant) | LTE Module | ||||
1 2 | Related OET KnowledgeDataBase Inquiry: Is there a KDB inquiry associated with this application? | No | ||||
1 2 | Modular Equipment Type | Single Modular Approval | ||||
1 2 | Purpose / Application is for | Class II Permissive Change | ||||
1 2 | Original Equipment | |||||
1 2 | Composite Equipment: Is the equipment in this application a composite device subject to an additional equipment authorization? | No | ||||
1 2 | Related Equipment: Is the equipment in this application part of a system that operates with, or is marketed with, another device that requires an equipment authorization? | No | ||||
1 2 | Grant Comments | Single Modular Approval. Power listed is maximum conducted output power. Approval is limited to OEM installation only. Compliance of this device in all final host configurations is the responsibility of the Grantee. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not transmit simultaneously with any other antenna or transmitter, except as evaluated in this filing or in accordance with FCC multitransmitter product procedures. The antenna(s) used for this transmitter must not exceed a maximum gain of 8dBi in 1800MHz, 8.55dBi in 600MHz, 5dBi in 1700MHz, 9.42dBi in 800MHz, and 8.73dBi in 700MHz. OEM integrators must be provided with antenna installation instructions and labeling requirements for finished products. OEM integrators and end-Users must be provided with transmitter operation conditions for satisfying RF exposure compliance. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. This device supports LTE of 1.4, 3, 5, 10, 15, and 20MHz bandwidth modes for FDD LTE Bands 2, 4, and 66; LTE of 1.4, 3, 5, and 10MHz bandwidth modes for FDD LTE Bands 5 and 12; LTE of 5, and 10MHz bandwidth modes for FDD LTE Band 13 and 14; LTE of 5, 10, 15, 20MHz for LTE B71 This device contains functions that are not operational in U.S. Territories. This filing is only applicable for U.S. operations. Class II Permissive Change: WCDMA mode disabled by software. Address RF Exposure along with WLAN and BT co-location in the host of body worn camera, model name BioAX, as documented in this filing. The highest reported SAR for stand-alone and simultaneous transmission exposure conditions are 1.15 W/kg and 1.44 W/kg, respectively. | ||||
1 2 | Single Modular Approval. Power listed is maximum conducted output power. Approval is limited to OEM installation only. Compliance of this device in all final host configurations is the responsibility of the Grantee. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not transmit simultaneously with any other antenna or transmitter, except as evaluated in this filing or in accordance with FCC multi-transmitter product procedures. The antenna(s) used for this transmitter must not exceed a maximum gain of 8dBi in 1800MHz, 8.55dBi in 600MHz, 5dBi in 1700MHz, 9.42dBi in 800MHz, and 8.73dBi in 700MHz. OEM integrators must be provided with antenna installation instructions and labeling requirements for finished products. OEM integrators and end-Users must be provided with transmitter operation conditions for satisfying RF exposure compliance. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. This device supports LTE of 1.4, 3, 5, 10, 15, and 20MHz bandwidth modes for FDD LTE Bands 2, 4, and 66; LTE of 1.4, 3, 5, and 10MHz bandwidth modes for FDD LTE Bands 5 and 12; LTE of 5, and 10MHz bandwidth modes for FDD LTE Band 13 and 14; LTE of 5, 10, 15, 20MHz for LTE B71 This device contains functions that are not operational in U.S. Territories. This filing is only applicable for U.S. operations. | |||||
1 2 | Is there an equipment authorization waiver associated with this application? | No | ||||
1 2 | If there is an equipment authorization waiver associated with this application, has the associated waiver been approved and all information uploaded? | No | ||||
app s | Test Firm Name and Contact Information | |||||
1 2 | Firm Name |
Shenzhen Timeway Testing Laboratories
|
||||
1 2 |
TA Technology (Shanghai) Co., Ltd.
|
|||||
1 2 | Name |
T**** T******
|
||||
1 2 |
M**** L****
|
|||||
1 2 | Telephone Number |
+86-1********
|
||||
1 2 |
86-21********
|
|||||
1 2 |
T******@timeway-lab.com
|
|||||
1 2 |
l******@ta-shanghai.com
|
|||||
Equipment Specifications | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
1 | 1 | 22H | 826.4 | 846.6 | 0.209 | 0.0055 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
1 | 2 | 22H | 825.5 | 847.5 | 0.254 | 0.0081 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
1 | 3 | 22H | 829 | 844 | 0.252 | 0.0081 ppm | 9M04G7D | ||||||||||||||||||||||||||||||||||
1 | 4 | 22H | 825.5 | 847.5 | 0.222 | 0.0054 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
1 | 5 | 22H | 829 | 844 | 0.219 | 0.0054 ppm | 9M04W7D | ||||||||||||||||||||||||||||||||||
1 | 6 | 24E | 1852.4 | 1907.6 | 0.208 | 0.0044 ppm | 4M13F9W | ||||||||||||||||||||||||||||||||||
1 | 7 | 24E | 1855 | 1905 | 0.243 | 0.0019 ppm | 9M05G7D | ||||||||||||||||||||||||||||||||||
1 | 8 | 24E | 1860 | 1900 | 0.24 | 0.0019 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 9 | 24E | 1851.5 | 1908.5 | 0.202 | 0.0029 ppm | 2M77W7D | ||||||||||||||||||||||||||||||||||
1 | 1 | 24E | 1860 | 1900 | 0.199 | 0.0029 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 11 | 27 | 1712.4 | 1752.6 | 0.222 | 0.003 ppm | 4M13F9W | ||||||||||||||||||||||||||||||||||
1 | 12 | 27 | 1711.5 | 1753.5 | 0.236 | 0.002 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
1 | 13 | 27 | 1720 | 1745 | 0.231 | 0.002 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 14 | 27 | 1711.5 | 1753.5 | 0.219 | 0.004 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
1 | 15 | 27 | 1720 | 1745 | 0.216 | 0.004 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 16 | 27 | 700.5 | 714.5 | 0.237 | 0.0077 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
1 | 17 | 27 | 704 | 711 | 0.234 | 0.0077 ppm | 9M05G7D | ||||||||||||||||||||||||||||||||||
1 | 18 | 27 | 700.5 | 714.5 | 0.211 | 0.0054 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
1 | 19 | 27 | 704 | 711 | 0.195 | 0.0054 ppm | 9M04W7D | ||||||||||||||||||||||||||||||||||
1 | 2 | 27 | 782 | 782 | 0.243 | 0.0078 ppm | 9M03G7D | ||||||||||||||||||||||||||||||||||
1 | 21 | 27 | 782 | 782 | 0.219 | 0.0088 ppm | 9M03W7D | ||||||||||||||||||||||||||||||||||
1 | 22 | 27 | 1715 | 1775 | 0.241 | 0.0057 ppm | 9M04G7D | ||||||||||||||||||||||||||||||||||
1 | 23 | 27 | 1720 | 1770 | 0.238 | 0.0057 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 24 | 27 | 1711.5 | 1778.5 | 0.194 | 0.0048 ppm | 2M77W7D | ||||||||||||||||||||||||||||||||||
1 | 25 | 27 | 1720 | 1770 | 0.19 | 0.0048 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 26 | 27 | 668 | 693 | 0.222 | 0.0053 ppm | 9M03G7D | ||||||||||||||||||||||||||||||||||
1 | 27 | 27 | 673 | 688 | 0.221 | 0.0053 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
1 | 28 | 27 | 668 | 693 | 0.197 | 0.0026 ppm | 9M04W7D | ||||||||||||||||||||||||||||||||||
1 | 29 | 27 | 673 | 688 | 0.194 | 0.0026 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
1 | 3 | 9 | 790.5 | 795.5 | 0.244 | 0.0096 ppm | 4M53G7D | ||||||||||||||||||||||||||||||||||
1 | 31 | 27 | 793 | 793 | 0.243 | 0.0096 ppm | 9M02G7D | ||||||||||||||||||||||||||||||||||
1 | 32 | 27 | 793 | 793 | 0.218 | 0.0077 ppm | 9M03W7D | ||||||||||||||||||||||||||||||||||
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
2 | 1 | 22H | 826.4 | 846.6 | 0.209 | 0.0055 ppm | 4M15F9W | ||||||||||||||||||||||||||||||||||
2 | 2 | 22H | 825.5 | 847.5 | 0.254 | 0.0081 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
2 | 3 | 22H | 829 | 844 | 0.252 | 0.0081 ppm | 9M04G7D | ||||||||||||||||||||||||||||||||||
2 | 4 | 22H | 825.5 | 847.5 | 0.222 | 0.0054 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
2 | 5 | 22H | 829 | 844 | 0.219 | 0.0054 ppm | 9M04W7D | ||||||||||||||||||||||||||||||||||
2 | 6 | 24E | 1852.4 | 1907.6 | 0.208 | 0.0044 ppm | 4M13F9W | ||||||||||||||||||||||||||||||||||
2 | 7 | 24E | 1855 | 1905 | 0.243 | 0.0019 ppm | 9M05G7D | ||||||||||||||||||||||||||||||||||
2 | 8 | 24E | 1860 | 1900 | 0.24 | 0.0019 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 9 | 24E | 1851.5 | 1908.5 | 0.202 | 0.0029 ppm | 2M77W7D | ||||||||||||||||||||||||||||||||||
2 | 1 | 24E | 1860 | 1900 | 0.199 | 0.0029 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 11 | 27 | 1712.4 | 1752.6 | 0.222 | 0.003 ppm | 4M13F9W | ||||||||||||||||||||||||||||||||||
2 | 12 | 27 | 1711.5 | 1753.5 | 0.236 | 0.002 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
2 | 13 | 27 | 1720 | 1745 | 0.231 | 0.002 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 14 | 27 | 1711.5 | 1753.5 | 0.219 | 0.004 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
2 | 15 | 27 | 1720 | 1745 | 0.216 | 0.004 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 16 | 27 | 700.5 | 714.5 | 0.237 | 0.0077 ppm | 2M75G7D | ||||||||||||||||||||||||||||||||||
2 | 17 | 27 | 704 | 711 | 0.234 | 0.0077 ppm | 9M05G7D | ||||||||||||||||||||||||||||||||||
2 | 18 | 27 | 700.5 | 714.5 | 0.211 | 0.0054 ppm | 2M76W7D | ||||||||||||||||||||||||||||||||||
2 | 19 | 27 | 704 | 711 | 0.195 | 0.0054 ppm | 9M04W7D | ||||||||||||||||||||||||||||||||||
2 | 2 | 27 | 782 | 782 | 0.243 | 0.0078 ppm | 9M03G7D | ||||||||||||||||||||||||||||||||||
2 | 21 | 27 | 782 | 782 | 0.219 | 0.0088 ppm | 9M03W7D | ||||||||||||||||||||||||||||||||||
2 | 22 | 27 | 1715 | 1775 | 0.241 | 0.0057 ppm | 9M04G7D | ||||||||||||||||||||||||||||||||||
2 | 23 | 27 | 1720 | 1770 | 0.238 | 0.0057 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 24 | 27 | 1711.5 | 1778.5 | 0.194 | 0.0048 ppm | 2M77W7D | ||||||||||||||||||||||||||||||||||
2 | 25 | 27 | 1720 | 1770 | 0.19 | 0.0048 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 26 | 27 | 668 | 693 | 0.222 | 0.0053 ppm | 9M03G7D | ||||||||||||||||||||||||||||||||||
2 | 27 | 27 | 673 | 688 | 0.221 | 0.0053 ppm | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 28 | 27 | 668 | 693 | 0.197 | 0.0026 ppm | 9M04W7D | ||||||||||||||||||||||||||||||||||
2 | 29 | 27 | 673 | 688 | 0.194 | 0.0026 ppm | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 3 | 9 | 790.5 | 795.5 | 0.244 | 0.0096 ppm | 4M53G7D | ||||||||||||||||||||||||||||||||||
2 | 31 | 9 | 793 | 793 | 0.243 | 0.0096 ppm | 9M02G7D | ||||||||||||||||||||||||||||||||||
2 | 32 | 9 | 793 | 793 | 0.218 | 0.0077 ppm | 9M03W7D |
some individual PII (Personally Identifiable Information) available on the public forms may be redacted, original source may include additional details
This product uses the FCC Data API but is not endorsed or certified by the FCC