all | frequencies |
|
|
|
|
exhibits | applications |
---|---|---|---|---|---|---|---|
manual | photos | label |
app s | submitted / available | |||||||
---|---|---|---|---|---|---|---|---|
1 2 3 4 |
|
Users Manual | Users Manual | 1.69 MiB | August 13 2020 | |||
1 2 3 4 |
|
Internal Photo | Internal Photos | 1.35 MiB | August 13 2020 | |||
1 2 3 4 |
|
External Photos | External Photos | 584.51 KiB | August 13 2020 | |||
1 2 3 4 |
|
Label Info | ID Label/Location Info | 258.30 KiB | August 13 2020 | |||
1 2 3 4 |
|
Authorization Declaration | Cover Letter(s) | 58.05 KiB | August 13 2020 | |||
1 2 3 4 | Block Diagram | Block Diagram | August 13 2020 | confidential | ||||
1 2 3 4 |
|
Confidentiality Letter | Cover Letter(s) | 68.77 KiB | August 13 2020 | |||
1 2 3 4 |
|
Modular Approval Request | Cover Letter(s) | 106.20 KiB | August 13 2020 | |||
1 2 3 4 | Operation Description | Operational Description | August 13 2020 | confidential | ||||
1 2 3 4 | Part List | Parts List/Tune Up Info | August 13 2020 | confidential | ||||
1 2 3 4 |
|
RF Exposure Info | RF Exposure Info | 275.39 KiB | August 13 2020 | |||
1 2 3 4 | Schematics | Schematics | August 13 2020 | confidential | ||||
1 2 3 4 | Sofware Security Info | SDR Software/Security Inf | August 13 2020 | confidential | ||||
1 2 3 4 |
|
Test Report 2.4G RLAN R00 DTS | Test Report | 4.43 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report BT LE R00 DTS | Test Report | 1.87 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Setup Photos | Test Setup Photos | 392.61 KiB | August 13 2020 | |||
1 2 3 4 | Turn-up Info | Parts List/Tune Up Info | August 13 2020 | confidential | ||||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part1 PCB | Test Report | 1.68 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part2 PCB | Test Report | 4.89 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part3 PCB | Test Report | 5.01 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part4 PCB | Test Report | 4.97 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part5 PCB | Test Report | 4.72 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part6 PCB | Test Report | 5.04 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part7 PCB | Test Report | 5.05 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part8 PCB | Test Report | 5.01 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part9 PCB | Test Report | 5.36 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 90(R) LTE Band 14 R00 PCB | Test Report | 2.58 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 90(S) LTE 26 R00 Part 1 PCB | Test Report | 2.69 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part 90(S) LTE 26 R00 Part 2 PCB | Test Report | 3.65 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part10 PCB | Test Report | 4.73 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report Part27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part11 PCB | Test Report | 2.97 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA Band II & LTE Band 2&25 R00 Part 1 PCB | Test Report | 3.45 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA Band II & LTE Band 2&25 R00 Part 2 PCB | Test Report | 5.12 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA Band II & LTE Band 2&25 R00 Part 3 PCB | Test Report | 4.85 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA Band II & LTE Band 2&25 R00 Part 4 PCB | Test Report | 5.18 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA Band II & LTE Band 2&25 R00 Part 5 PCB | Test Report | 1.20 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA V & LTE 5&26 R00 Part 1 PCB | Test Report | 3.81 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA V & LTE 5&26 R00 Part 2 PCB | Test Report | 5.03 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA V & LTE 5&26 R00 Part 3 PCB | Test Report | 5.05 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report WCDMA V & LTE 5&26 R00 Part 4 PCB | Test Report | 1.70 MiB | August 13 2020 | |||
1 2 3 4 | Tune-up Info | Parts List/Tune Up Info | August 13 2020 | confidential | ||||
1 2 3 4 |
|
Ad Hoc Mode Declaration | Cover Letter(s) | 83.27 KiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report 5G RLAN R00 Part 1 NII | Test Report | 3.68 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report 5G RLAN R00 Part 2 NII | Test Report | 3.50 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report DFS R00 NII | Test Report | 1.30 MiB | August 13 2020 | |||
1 2 3 4 |
|
Test Report DSS | Test Report | 3.14 MiB | August 13 2020 |
1 2 3 4 | Users Manual | Users Manual | 1.69 MiB | August 13 2020 |
SC200R Series Hardware Design Multi-mode Smart LTE Module Rev: SC200R_Hardware_Design_V1.0 Date: 2019-12-30 Status: Released Smart Module Series SC200R Hardware Design Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd. Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@quectel.com Or our local office. For more information, please visit:
http://www.quectel.com/support/sales.htm For technical support, or to report documentation errors, please visit:
http://www.quectel.com/support/technical.htm Or email to: support@quectel.com GENERAL NOTES QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved. SC200R_Hardware_Design 1 / 125 Smart Module Series SC200R Hardware Design About the Document History Revision Date Author Description 1.0 2019-12-30 Arsene TONG Initial SC200R_Hardware_Design 2 / 125 Smart Module Series SC200R Hardware Design Contents About the Document ................................................................................................................................... 2 Contents ....................................................................................................................................................... 3 Table Index ................................................................................................................................................... 6 Figure Index ................................................................................................................................................. 8 1 Introduction ........................................................................................................................................ 10 1.1. Safety Information.................................................................................................................... 13 2 Product Concept ................................................................................................................................ 14 2.1. General Description ................................................................................................................. 14 2.2. Evaluation Board ..................................................................................................................... 14 3.5. 3 Application Interfaces ....................................................................................................................... 15 3.1. General Description ................................................................................................................. 15 3.2. Pin Assignment ........................................................................................................................ 16 Pin Description ......................................................................................................................... 17 3.3. 3.4. Power Supply ........................................................................................................................... 31 3.4.1. Power Supply Pins ......................................................................................................... 31 3.4.2. Decrease Voltage Drop .................................................................................................. 31 3.4.3. Reference Design for Power Supply .............................................................................. 33 Turn on and off Scenarios ....................................................................................................... 34 3.5.1. Turn on Module Using the PWRKEY ............................................................................. 34 3.5.2. Turn off Module .............................................................................................................. 36 VRTC Interface ........................................................................................................................ 36 3.6. Power Output ........................................................................................................................... 37 3.7. 3.8. Battery Charge and Management ........................................................................................... 37 3.9. USB Interface .......................................................................................................................... 39 3.10. UART Interfaces ...................................................................................................................... 41 3.11.
(U)SIM Interfaces..................................................................................................................... 42 3.12. SD Card Interface .................................................................................................................... 45 3.13. GPIO Interfaces ....................................................................................................................... 47 3.14. I2C Interfaces .......................................................................................................................... 49 3.15. SPI Interfaces .......................................................................................................................... 50 3.16. ADC Interface .......................................................................................................................... 51 3.17. Motor Drive Interface ............................................................................................................... 51 3.18. LCM Interface .......................................................................................................................... 52 3.19. Touch Panel Interface .............................................................................................................. 54 3.20. Camera Interfaces ................................................................................................................... 55 3.20.1. Design Considerations ................................................................................................... 59 3.21. Sensor Interfaces..................................................................................................................... 61 3.22. Audio Interfaces ....................................................................................................................... 61 3.22.1. Reference Circuit Design for Microphone Interfaces ..................................................... 63 3.22.2. Reference Circuit Design for Receiver Interface ........................................................... 64 SC200R_Hardware_Design 3 / 125 Smart Module Series SC200R Hardware Design 3.22.3. Reference Circuit Design for Headphone Interface ....................................................... 64 3.22.4. Reference Circuit Design for Loudspeaker Interface..................................................... 65 3.22.5. Audio Interfaces Design Considerations........................................................................ 65 3.23. Emergency Download Interface .............................................................................................. 66 4 Wi-Fi and BT ....................................................................................................................................... 67 4.1. Wi-Fi Overview ........................................................................................................................ 67 4.1.1. Wi-Fi Performance ......................................................................................................... 67 BT Overview ............................................................................................................................ 69 4.2.1. BT Performance ............................................................................................................. 70 4.2. 5 GNSS ................................................................................................................................................... 71 5.1. GNSS Performance ................................................................................................................. 71 5.2. GNSS RF Design Guidelines .................................................................................................. 72 6 Antenna Interfaces ............................................................................................................................. 73 6.1. Main/Rx-diversity Antenna Interfaces ...................................................................................... 73 6.1.1. Main and Rx-diversity Antenna Interfaces Reference Design ....................................... 76 6.1.2. Reference Design of RF Layout..................................................................................... 77 6.2. Wi-Fi/BT Antenna Interface ..................................................................................................... 79 6.3. GNSS Antenna Interface ......................................................................................................... 80 6.3.1. Recommended Circuit for Passive Antenna .................................................................. 81 6.3.2. Recommended Circuit for Active Antenna ..................................................................... 81 Antenna Installation ................................................................................................................. 82 6.4.1. Antenna Requirements .................................................................................................. 82 6.4.2. Recommended RF Connector for Antenna Installation ................................................. 83 6.4. 7 Electrical, Reliability and Radio Characteristics ............................................................................ 85 Absolute Maximum Ratings ..................................................................................................... 85 7.1. 7.2. Power Supply Ratings ............................................................................................................. 85 7.3. Operation and Storage Temperatures ..................................................................................... 86 7.4. Current Consumption .............................................................................................................. 86 7.5. RF Output Power ..................................................................................................................... 96 7.6. RF Receiving Sensitivity ........................................................................................................ 100 7.7. Electrostatic Discharge .......................................................................................................... 104 8 Mechanical Dimensions .................................................................................................................. 105 8.1. Mechanical Dimensions of the Module.................................................................................. 105 8.2. Recommended Footprint ....................................................................................................... 107 Top and Bottom Views of the Module .................................................................................... 108 8.3. 9 Storage, Manufacturing and Packaging ........................................................................................ 109 9.1. Storage................................................................................................................................... 109 9.2. Manufacturing and Soldering ................................................................................................ 110 9.3. Packaging .............................................................................................................................. 112 10 Appendix A References ................................................................................................................... 114 11 Appendix B GPRS Coding Schemes ............................................................................................. 117 SC200R_Hardware_Design 4 / 125 Smart Module Series SC200R Hardware Design 12 Appendix C GPRS Multi-slot Classes ............................................................................................ 118 13 Appendix D EDGE Modulation and Coding Schemes ................................................................. 120 SC200R_Hardware_Design 5 / 125 Smart Module Series SC200R Hardware Design Table Index TABLE 7: I/O PARAMETERS DEFINITION ....................................................................................................... 17 TABLE 8: PIN DESCRIPTION ........................................................................................................................... 17 TABLE 9: POWER DESCRIPTION ................................................................................................................... 37 TABLE 10: PIN DEFINITION OF USB INTERFACE ......................................................................................... 39 TABLE 11: USB TRACE LENGTH INSIDE THE MODULE ............................................................................... 40 TABLE 12: PIN DEFINITION OF UART INTERFACES ..................................................................................... 41 TABLE 13: PIN DEFINITION OF (U)SIM INTERFACES ................................................................................... 42 TABLE 14: PIN DEFINITION OF SD CARD INTERFACE ................................................................................ 45 TABLE 15: SD CARD TRACE LENGTH INSIDE THE MODULE ...................................................................... 46 TABLE 16: PIN DEFINITION OF GPIO INTERFACES ..................................................................................... 47 TABLE 17: PIN DEFINITION OF I2C INTERFACES ......................................................................................... 49 TABLE 18: PIN DEFINITION OF SPI INTERFACES ....................................................................................... 50 TABLE 19: PIN DEFINITION OF ADC INTERFACES ....................................................................................... 51 TABLE 20: PIN DEFINITION OF MOTOR DRIVE INTERFACE ....................................................................... 51 TABLE 21: PIN DEFINITION OF LCM INTERFACE ......................................................................................... 52 TABLE 22: PIN DEFINITION OF TOUCH PANEL INTERFACE ....................................................................... 54 TABLE 23: PIN DEFINITION OF CAMERA INTERFACE ................................................................................. 55 TABLE 24: MIPI TRACE LENGTH INSIDE THE MODULE............................................................................... 59 TABLE 25: PIN DEFINITION OF SENSOR INTERFACES ............................................................................... 61 TABLE 26: PIN DEFINITION OF AUDIO INTERFACES ................................................................................... 61 TABLE 27: WI-FI TRANSMITTING PERFORMANCE ....................................................................................... 67 TABLE 28: WI-FI RECEIVING PERFORMANCE .............................................................................................. 68 TABLE 29: BT DATA RATE AND VERSION ...................................................................................................... 69 TABLE 30: BT TRANSMITTING AND RECEIVING PERFORMANCE ............................................................. 70 TABLE 31: GNSS PERFORMANCE ................................................................................................................. 71 TABLE 32: PIN DEFINITION OF MAIN/RX-DIVERSITY ANTENNA INTERFACES ......................................... 73 TABLE 33: SC200R-CE OPERATING FREQUENCIES.................................................................................... 73 TABLE 34: SC200R-EM* OPERATING FREQUENCIES .................................................................................. 74 TABLE 35: SC200R-NA* OPERATING FREQUENCIES .................................................................................. 75 TABLE 36: SC200R-JP* OPERATING FREQUENCIES ................................................................................... 76 TABLE 37: PIN DEFINITION OF WI-FI/BT ANTENNA INTERFACE ................................................................ 79 TABLE 38: WI-FI/BT FREQUENCY................................................................................................................... 79 TABLE 39: PIN DEFINITION OF GNSS ANTENNA INTERFACE ..................................................................... 80 TABLE 40: GNSS FREQUENCY ....................................................................................................................... 80 TABLE 41: ANTENNA REQUIREMENTS .......................................................................................................... 82 TABLE 42: ABSOLUTE MAXIMUM RATINGS .................................................................................................. 85 TABLE 43: SC200R MODULE POWER SUPPLY RATINGS ............................................................................ 85 TABLE 44: OPERATION AND STORAGE TEMPERATURES .......................................................................... 86 TABLE 45: SC200R-CE CURRENT CONSUMPTION ...................................................................................... 86 TABLE 46: SC200R-EM* CURRENT CONSUMPTION .................................................................................... 89 SC200R_Hardware_Design 6 / 125 Smart Module Series SC200R Hardware Design TABLE 47: SC200R-NA* CURRENT CONSUMPTION..................................................................................... 92 TABLE 48: SC200R-JP* CURRENT CONSUMPTION ..................................................................................... 94 TABLE 49: SC200R-CE RF OUTPUT POWER ................................................................................................ 96 TABLE 50: SC200R-EM* RF OUTPUT POWER ............................................................................................... 97 TABLE 51: SC200R-NA* RF OUTPUT POWER ............................................................................................... 98 TABLE 52: SC200R-JP* RF OUTPUT POWER ................................................................................................ 99 TABLE 53: SC200R-CE RF RECEIVING SENSITIVITY ................................................................................. 100 TABLE 54: SC200R-EM RF RECEIVING SENSITIVITY ................................................................................ 101 TABLE 55: SC200-NA* RF RECEIVING SENSITIVITY .................................................................................. 102 TABLE 56: SC200-JP*RF RECEIVING SENSITIVITY .................................................................................... 103 TABLE 57: ESD CHARACTERISTICS ( TEMPERATURE: 25 C, HUMIDITY: 45%) ..................................... 104 TABLE 58: RECOMMENDED THERMAL PROFILE PARAMETERS .............................................................. 110 TABLE 59: REEL PACKAGING ........................................................................................................................ 113 TABLE 60: RELATED DOCUMENTS ............................................................................................................... 114 TABLE 61: TERMS AND ABBREVIATIONS ..................................................................................................... 114 TABLE 62: DESCRIPTION OF DIFFERENT CODING SCHEMES ................................................................. 117 TABLE 63: GPRS MULTI-SLOT CLASSES ..................................................................................................... 118 TABLE 64: EDGE MODULATION AND CODING SCHEMES ......................................................................... 120 SC200R_Hardware_Design 7 / 125 Smart Module Series SC200R Hardware Design Figure Index FIGURE 1: FUNCTIONAL DIAGRAM ................................................................................................................... FIGURE 2: PIN ASSIGNMENT (TOP VIEW)..................................................................................................... 16 FIGURE 3: VOLTAGE DROP SAMPLE ............................................................................................................. 32 FIGURE 4: STAR STRUCTURE OF THE POWER SUPPLY............................................................................ 32 FIGURE 5: REFERENCE CIRCUIT OF POWER SUPPLY .............................................................................. 33 FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT ................................................................... 34 FIGURE 7: TURN ON THE MODULE USING KEYSTROKE ........................................................................... 34 FIGURE 8: TIMING OF TURNING ON MODULE ............................................................................................. 35 FIGURE 9: TIMING OF TURNING OFF MODULE ........................................................................................... 36 FIGURE 10: RTC POWERED BY COIN CELL ................................................................................................. 36 FIGURE 11: REFERENCE DESIGN FOR BATTERY CHARGING CIRCUIT ................................................... 38 FIGURE 12: USB INTERFACE REFERENCE DESIGN (OTG IS NOT SUPPORTED) ................................... 39 FIGURE 13: USB INTERFACE REFERENCE DESIGN (OTG IS SUPPORTED) ............................................ 40 FIGURE 14: REFERENCE CIRCUIT WITH LEVEL TRANSLATOR CHIP (FOR UART5) ............................... 41 FIGURE 15: RS-232 LEVEL MATCH CIRCUIT (FOR UART5) ......................................................................... 42 FIGURE 16: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
........................................................................................................................................................................... 43 FIGURE 17: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR
........................................................................................................................................................................... 44 FIGURE 18: REFERENCE CIRCUIT FOR SD CARD INTERFACE ................................................................. 45 FIGURE 19: REFERENCE CIRCUIT FOR MOTOR CONNECTION ................................................................ 51 FIGURE 20: REFERENCE CIRCUIT DESIGN FOR LCM INTERFACE ........................................................... 53 FIGURE 21: REFERENCE DESIGN FOR EXTERNAL BACKLIGHT DRIVING CIRCUIT ............................... 54 FIGURE 22: REFERENCE CIRCUIT DESIGN FOR TP INTERFACE .............................................................. 55 FIGURE 23: REFERENCE CIRCUIT DESIGN FOR CAMERAS ...................................................................... 58 FIGURE 24: REFERENCE CIRCUIT DESIGN FOR ECM MICROPHONE INTERFACES .............................. 63 FIGURE 25: REFERENCE CIRCUIT DESIGN FOR MEMS MICROPHONE INTERFACES ........................... 63 FIGURE 26: REFERENCE CIRCUIT DESIGN FOR RECEIVER INTERFACE ................................................ 64 FIGURE 27: REFERENCE CIRCUIT DESIGN FOR HEADPHONE INTERFACE ........................................... 64 FIGURE 28: REFERENCE CIRCUIT DESIGN FOR LOUDSPEAKER INTERFACE ....................................... 65 FIGURE 29: REFERENCE CIRCUIT DESIGN FOR EMERGENCY DOWNLOAD INTERFACE ..................... 66 FIGURE 30: REFERENCE CIRCUIT DESIGN FOR MAIN AND RX-DIVERSITY ANTENNA INTERFACES .. 77 FIGURE 31: MICROSTRIP DESIGN ON A 2-LAYER PCB ............................................................................... 77 FIGURE 32: COPLANAR WAVEGUIDE DESIGN ON A 2-LAYER PCB ........................................................... 78 FIGURE 33: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GROUND)
........................................................................................................................................................................... 78 FIGURE 34: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GROUND)
........................................................................................................................................................................... 78 FIGURE 35: REFERENCE CIRCUIT DESIGN FOR WI-FI/BT ANTENNA ....................................................... 80 FIGURE 36: REFERENCE CIRCUIT DESIGN FOR GNSS PASSIVE ANTENNA ........................................... 81 FIGURE 37: REFERENCE CIRCUIT DESIGN FOR GNSS ACTIVE ANTENNA ............................................. 81 SC200R_Hardware_Design 8 / 125 Smart Module Series SC200R Hardware Design FIGURE 38: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM) ................................................ 83 FIGURE 39: MECHANICALS OF U.FL-LP CONNECTORS ............................................................................. 83 FIGURE 40: SPACE FACTOR OF MATED CONNECTORS (UNIT: MM) ......................................................... 84 FIGURE 41: SC200R MODULE TOP AND SIDE DIMENSIONS .................................................................... 105 FIGURE 42: SC200R MODULE BOTTOM DIMENSIONS (TOP VIEW) ......................................................... 106 FIGURE 43: RECOMMENDED FOOTPRINT (TOP VIEW) ............................................................................ 107 FIGURE 44: TOP VIEW OF THE MODULE .................................................................................................... 108 FIGURE 45: BOTTOM VIEW OF THE MODULE ............................................................................................ 108 FIGURE 46: RECOMMENDED REFLOW SOLDERING THERMAL PROFILE ............................................... 110 FIGURE 47: TAPE DIMENSIONSUNIT: MM ............................................................................................. 112 FIGURE 48: REEL DIMENSIONS (UNIT: MM) ................................................................................................ 113 SC200R_Hardware_Design 9 / 125 Smart Module Series SC200R Hardware Design 1 Introduction This document defines the SC200R module and its air interfaces and hardware interfaces which are connected with customers application. This document can help customers quickly understand module interface specifications, electrical and mechanical details as well as other related information of SC200R module. Associated with application note and user guide, customers can use SC200R module to design and set up mobile applications easily. OEM/Integrators Installation Manual Important Notice to OEM integrators 1. This module is limited to OEM installation ONLY. 2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b). 3. The separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and different antenna configurations 4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with Part 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are complaint with the transmitter(s) rule(s). The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed. IMPORTANT NOTE:
In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization. End Product Labeling The final end product must be labeled in a visible area with the following:
Contains Transmitter Module FCC ID:XMR202005SC200RNA ; IC :10224A-20SC200RNA or Contains FCC ID:XMR202005SC200RNA ; IC :10224A-20SC200RNA. Manual Information to the End User The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the users manual of the end product which integrates this module. SC200R_Hardware_Design 10 / 125 Smart Module Series SC200R Hardware Design Federal Communication Commission Interference Statement This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:
- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help. FCC Caution:
Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) This device may not cause harmful interference, and
(2) This device must accept any interference received, including interference that may cause undesired operation. FCC Radiation Exposure Statement:
This equipment complies with FCC/IC radiation exposure limits set forth for an uncontrolled environment. This transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter. The module must be installed in the host device. This End equipment should be installed and operated with a minimum distance of 20cm centimeters between the radiator and your body. Industry Canada Statement This device complies with Industry Canada RSS-210 and CAN ICES-3(B)/NMB-3(B). Operation is subject to the following two conditions:
(1) this device may not cause interference, and
(2) this device must accept any interference, including interference that may cause undesired operation of the device. Le prsent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio RSS-210. L'exploitation est autorise aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radiolectrique subi, mme si le brouillage est susceptible d'en compromettre le fonctionnement. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. Cet metteur ne doit pas tre Co-plac ou ne fonctionnant en mme temps qu'aucune autre antenne ou metteur.
(i) the device for operation in the band 5150-5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;
(ii) the maximum antenna gain permitted for devices in the bands 5250-5350 MHz and SC200R_Hardware_Design 11 / 125 Smart Module Series SC200R Hardware Design 5470-5725 MHz shall comply with the e.i.r.p. limit; and
(iii) the maximum antenna gain permitted for devices in the band 5725-5825 MHz shall comply with the e.i.r.p. limits specified for point-to-point and non point-to-point operation as appropriate. Le guide dutilisation des dispositifs pour rseaux locaux doit inclure des instructions prcises sur les restrictions susmentionnes, notamment :
(i) les dispositifs fonctionnant dans la bande 5 150-5 250 MHz sont rservs uniquement pour une utilisation lintrieur afin de rduire les risques de brouillage prjudiciable aux systmes de satellites mobiles utilisant les mmes canaux;
(ii) le gain maximal dantenne permis pour les dispositifs utilisant les bandes 5 250-5 350 MHz et 5 470-5 725 MHz doit se conformer la limite de p.i.r.e.;
(iii) le gain maximal dantenne permis (pour les dispositifs utilisant la bande 5 725-5 825 MHz) doit se conformer la limite de p.i.r les limites spcifies pour un fonctionnement point point et non point point, selon le cas CAN ICES-3(B)/ NMB-3(B) SC200R_Hardware_Design 12 / 125 Smart Module Series SC200R Hardware Design 1.1. Safety Information The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating SC200R module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft. Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities. Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength. The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. SC200R_Hardware_Design 13 / 125 Smart Module Series SC200R Hardware Design 2 Product Concept 2.1. General Description SC200R is a series of 4G Smart LTE module based on Qualcomm platform and Android operating system, and provides industrial grade performance. Its general features are listed below:
Support worldwide LTE-FDD, LTE-TDD, DC-HSPA+, HSPA+, HSDPA+, HSUPA, WCDMA, EVDO/CDMA, EDGE and GPRS coverage. Integrate GPS/GLONASS/BeiDou satellite positioning systems. Support short-range wireless communication via Wi-Fi 802.11a/b/g/n and BT4.2 LE. Support multiple audio and video codecs. Built-in high performance AdrenoTM 308 graphics processing unit. Provide multiple audio and video input/output interfaces as well as abundant GPIO interfaces. SC200R module is available in four variants: SC200R-CE, SC200R-EM*, SC200R-NA*, SC200R-JP*, SC200R-WF*. 2.2. Evaluation Board To help customers design and test applications with Quectel SC200R modules, Quectel supplies an evaluation kit, which includes an evaluation board, a USB to RS232 converter cable, a USB T data cable, a power adapter, an earphone and antennas. For details, please refer the document [1]
SC200R_Hardware_Design 14 / 125 Smart Module Series SC200R Hardware Design 3 Application Interfaces 3.1. General Description I2C interface SC200R is an SMD type module with 146 LCC pins and 128 LGA pins. The following chapters provide the detailed description of pins/interfaces listed below. Power supply VRTC interface USB interface UART interfaces
(U)SIM interfaces SD card interface GPIO interfaces SPI interfaces ADC interfaces Motor drive interface LCM interface Touch panel interface Camera interfaces Sensor interfaces Audio interfaces Emergency download interface SC200R_Hardware_Design 15 / 125 Smart Module Series SC200R Hardware Design 3.2. Pin Assignment The following figure shows the pin assignment of SC200R module. VBAT_BB VBAT_BB GND MIC1_P MIC_GND MIC2_P GND EAR_P EAR_N SPK_P SPK_N GND USB_DM USB_DP GND USB_ID USIM2_DET USIM2_RST USIM2_CLK USIM2_DATA USIM2_VDD USIM1_DET USIM1_RST USIM1_CLK USIM1_DATA USIM1_VDD GND VIB_DRV_N PWM TP_INT TP_RST SD_LDO12 GPIO_33 UART5_TXD UART5_RXD UART5_CTS UART5_RTS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 F R _ T A B V F R _ T A B V D N G D N G S U B V S U B V D N G T E D _ S H L _ H P H F E R _ H P H R _ H P H D N G M R E H T _ T A B S N S _ T A B X R D _ T N A D N G D N G C D A 5 8 V 2 _ 7 1 O D L L E S _ G H C C T R V 8 V 1 _ 6 O D L 7 4 _ O P G I 2 6 _ O P G I D N G S S N G _ T N A 0 2 _ O P G I 1 2 _ O P G I 2 2 _ O P G I 3 2 _ O P G I 9 8 _ O P G I D N G Y E K R W P 6 4 _ O P G I 3 9 _ O P G I 8 V 1 _ 5 O D L 6 4 1 5 4 1 4 4 1 3 4 1 2 4 1 1 4 1 0 4 1 9 3 1 8 3 1 7 3 1 6 3 1 5 3 1 4 3 1 3 3 1 2 3 1 1 3 1 0 3 1 9 2 1 8 2 1 7 2 1 6 2 1 5 2 1 4 2 1 3 2 1 2 2 1 1 2 1 0 2 1 9 1 1 8 1 1 7 1 1 6 1 1 5 1 1 4 1 1 3 1 1 2 1 1 1 1 1 186 185 184 183 182 181 180 179 178 177 147 187 222 221 220 219 218 217 216 215 214 176 148 188 223 250 249 248 247 246 245 244 213 175 149 189 224 251 270 269 268 267 266 243 212 174 150 190 225 252 265 242 211 173 151 191 226 253 264 241 210 172 152 192 227 254 254 263 240 209 171 271 274 272 273 154 194 229 256 257 258 259 260 261 238 207 169 155 195 230 231 232 233 234 235 236 237 206 168 156 196 197 198 199 200 201 202 203 204 205 167 157 158 159 160 161 162 163 164 165 166 8 3 9 3 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 0 7 1 7 2 7 3 7 K L C _ D S D M C _ D S 1 1 O D L _ D S 0 A T A D _ D S 1 A T A D _ D S 2 A T A D _ D S 3 A T A D _ D S T E D _ D S T O O B _ B S U L C S _ C 2 _ P T I A D S _ C 2 _ P T I D N G E T _ D C L T S R _ D C L N _ K L C _ S D I P _ K L C _ S D I N _ 0 N L _ S D I P _ 0 N L _ S D I N _ 1 N L _ S D I P _ 1 N L _ S D I N _ 2 N L _ S D I P _ 2 N L _ S D I N _ 3 N L _ S D I P _ 3 N L _ S D I D N G D N G N _ K L C _ 1 S C I P _ K L C _ 1 S C I N _ 0 N L _ 1 S C I P _ 0 N L _ 1 S C I N _ 1 N L _ 1 S C I P _ 1 N L _ 1 S C I N _ 3 N L _ 1 S C I P _ 3 N L _ 1 S C I N _ 2 N L _ 1 S C I P _ 2 N L _ 1 S C I 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 GPIO_42 GPIO_44 GPIO_63 GPIO_43 GPIO_66 GPIO_87 GPIO_94 GPIO_95 GPIO_13 GPIO_12 GPIO_59 GPIO_48 GPIO_45 GPIO_130 VOL_DOWN VOL_UP DBG_TXD DBG_RXD SENSOR_I2C_SDA SENSOR_I2C_SCL GPIO_25 GND GND GND GND CAM_I2C_SDA CAM_I2C_SCL CAM1_PWDN CAM1_RST CAM0_PWDN CAM0_RST GND GND ANT_WIFI/BT CAM1_MCLK CAM0_MCLK 153 193 228 255 262 239 208 170 ANT_MAIN POWER Pins
(U)SIM Pins UART Pins GPIO Pins ANT Pins LCM Pins OTHERS Pins GND Pins AUDIO Pins USB Pins TP Pins CAMERA Pins SDCARD Pins RESERVED Pins Figure 1: Pin Assignment (Top View) SC200R_Hardware_Design 16 / 125 Smart Module Series SC200R Hardware Design 3.3. Pin Description The following tables show the SC200Rs pin definition. Table 1: I/O Parameters Definition Type AI AO DI DO IO OD PI PO Description Analog input Analog output Digital input Digital output Bidirectional Open drain Power input Power output The following tables show the SC200Rs pin definition and electrical characteristics. Table 2: Pin Description Power supply Pin Name Pin No. I/O Description VBAT_BB 1, 2 PI VBAT_RF 145, 146 PI VRTC 126 PI/PO DC Characteristics Comment Vmax=4.2V Vmin=3.55V Vnorm=3.8V Vmax=4.2V Vmin=3.55V Vnorm=3.8V It must be provided with sufficient current up to 3.0A. It is suggested to use a TVS for external circuit. VOmax=3.2V VI=2.0V~3.25V If it is not used, keep this pin open. Power supply for modules baseband part Power supply for modules RF part. Power supply for internal RTC circuit. LDO5_1V8 111 PO 1.8V output power supply Vnorm=1.8V IOmax=20mA Power supply for external GPIOs pull up circuits and SC200R_Hardware_Design 17 / 125 Smart Module Series SC200R Hardware Design level shift circuit. Power supply for sensors, cameras, and I2C pull-up circuits. If it is used, it is recommended to connect an external 2.2F~4.7F capacitor to this pin in series. If it is not used, keep it open. Reserved Power supply. If it is used, a 1F~2.2F bypass capacitor is recommended. If it is not used, keep it open. Power supply for LCD, CTP, sensors and camera AVDD. If it is used, it is recommended to connect an external 2.2F~4.7F capacitor to this pin in series. If it is not used, keep this pin open. Reserved Power supply. If it is used, a 1F~2.2F bypass capacitor is recommended. If it is not used, keep this pin open. LDO6_1V8 125 PO 1.8V output power supply Vnorm=1.8V IOmax=150mA LDO10_2V85 156 PO 2.85V output power supply Vnorm=2.85V IOmax=150mA LDO17_2V85 129 PO 2.85V output power supply Vnorm=2.85V IOmax=450mA LDO16_2V8 193 PO 2.8V output power supply Vnorm=2.8V IOmax=55mA GND GND 3, 7, 12, 27, 15, 51, 62, SC200R_Hardware_Design 18 / 125 Smart Module Series SC200R Hardware Design 76, 69, 85, 78, 86, 88, 89, 120, 122, 130, 132, 135, 140, 143, 144, 149, 162, 171,172, 176, 187~191, 202~204, 206~224, 226~231, 233~238, 240,241, 243~245, 247,248, 250,251, 255,256, 258,259, 261,266, 268,269, 271~274 Pin Name Pin No. I/O Description DC Characteristics Comment Audio Interfaces MIC1_P MIC_GND MIC2_P EAR_P EAR_N SPK_P SPK_N 4 5 6 8 9 10 11 AI AI AI Microphone input for channel 1 (+) Microphone reference ground icrophone input for headset (+) AO Earpiece output (+) AO Earpiece output (-) AO Speaker output (+) AO Speaker output (-) If it is not used, connect to the ground. SC200R_Hardware_Design 19 / 125 Smart Module Series SC200R Hardware Design HPH_R 136 AO HPH_REF 137 AI HPH_L 138 AO HS_DET 139 AI MIC3_P 148 AI Headphone right channel output Headphone reference ground Headphone left channel output Headset insertion detection Microphone bias1 voltage Microphone input for secondary microphone (+) Microphone bias2 voltage MIC_BIAS1 147 AO VO =1.6V~2.85V High level by default. MIC_BIAS2 155 AO VO =1.6V~2.85V USB Interface Pin Name Pin No. I/O Description Comment DC Characteristics Vmax=6.2V Vmin=4.35V Vnorm=5.0V Used for USB 5V power input and USB detection. USB 2.0 standard compliant. 90 differential impedance. USB_VBUS 141, 142 PI USB power supply USB_DM USB_DP USB_ID 13 14 16
(U)SIM Interfaces AI/AO AI/AO DI USB differential data bus (-) USB differential data bus (+) USB ID detection of the input Pin Name Pin No. I/O Description DC Characteristics Comment USIM2_DET 17 DI
(U)SIM2 card hot-plug detection VILmax=0.63V VIHmin=1.17V High level by default. Active Low. Require external pull-up to 1.8V. If it is not used, keep it open. This function is disabled by default via software. It cannot be multiplexed into a Generic GPIO. SC200R_Hardware_Design 20 / 125 Smart Module Series SC200R Hardware Design USIM2_RST 18 DO USIM2_CLK 19 DO
(U)SIM2 card reset signal
(U)SIM2 card clock signal USIM2_DATA 20 IO
(U)SIM2 card data signal USIM2_VDD 21 PO
(U)SIM2 card power supply VOLmax=0.4V VOHmin=
0.8 x USIM2_VDD VOLmax=0.4V VOHmin=
0.8 USIM2_VDD VILmax=
0.2 USIM2_VDD VIHmin=
0.7USIM2_VDD VOLmax=0.4V VOHmin=
0.8 USIM2_VDD For 1.8V (U)SIM:
Vmax=1.85V Vmin=1.75V For 2.95V (U)SIM:
Vmax=3.1V Vmin=2.8V USIM1_DET 22 DI
(U)SIM1 card hot-plug detection VILmax=0.63V VIHmin=1.17V USIM1_RST 23 DO USIM1_CLK 24 DO
(U)SIM1 card reset signal
(U)SIM1 card clock signal USIM1_DATA 25 IO
(U)SIM1 card data signal VOLmax=0.4V VOHmin=
0.8 USIM1_VDD VOLmax=0.4V VOHmin=
0.8 USIM1_VDD VILmax=
0.2 USIM1_VDD VIHmin=
0.7 USIM1_VDD VOLmax=0.4V VOHmin=
0.8 USIM1_VDD They cannot be multiplexed into a Generic GPIOs. Either 1.8V or 2.95V (U)SIM card is supported. Active Low. Require external pull-up to 1.8V. If it is not used, keep it open. This function is disabled by default via software. It cannot be multiplexed into a generic GPIO. Cannot be multiplexed into generic GPIOs. SC200R_Hardware_Design 21 / 125 Smart Module Series SC200R Hardware Design For 1.8V (U)SIM:
Vmax=1.85V Vmin=1.75V For 2.95V (U)SIM:
Vmax=3.1V Vmin=2.8V Either 1.8V or 2.95V (U)SIM card is supported. DC Characteristics Comment 1.8V power domain. If it is not used, keep these pins open. USIM1_VDD 26 PO
(U)SIM1 card power supply UART Interfaces Pin Name Pin No. I/O Description UART5_TXD 34 DO UART5 transmit data UART5_RXD 35 DI UART5 receive data UART5_CTS 36 DI UART5 clear to send UART5_RTS 37 DO DBG_RXD 93 DI DBG_TXD 94 DO UART5 request to send UART2 receive data. Debug port by default. UART2 transmit data. Debug port by default. UART1_RXD 153 DI UART1 receive data UART1_TXD 154 DO UART1 transmit data SD Card Interface VOLmax=0.45V VOHmin=1.35V VILmax=0.63V VIHmin=1.17V VILmax=0.63V VIHmin=1.17V VOLmax=0.45V VOHmin=1.35V VILmax=0.63V VIHmin=1.17V VOLmax=0.45V VOHmin=1.35V VILmax=0.63V VIHmin=1.17V VOLmax=0.45V VOHmin=1.35V Pin Name Pin No. I/O Description DC Characteristics Comment SD_LDO11 38 PO 2.95V output power supply Vnorm=2.95V IOmax=800mA SD_LDO12 32 PO 1.8V/2.95V output power supply Vnorm=1.8V/2.95V IOmax=50mA Power supply for SD. Power supply for SDs pull up circuits. SD_CLK 39 DO 50 impedance High speed digital clock signal of SD card 1.8V SD card:
VOLmax=0.45V VOHmin=1.4V 2.95V SD card:
VOLmax=0.37V SC200R_Hardware_Design 22 / 125 Smart Module Series SC200R Hardware Design SD_CMD 40 IO Command signal of SD card SD_DATA0 41 SD_DATA1 42 SD_DATA2 43 IO IO IO SD_DATA3 44 IO High speed bidirectional digital signal lines of SD card VOHmin=2.2V 1.8V SD card:
VILmax=0.58V VIHmin=1.27V VOLmax=0.45V VOHmin=1.4V 2.95V SD card:
VILmax=0.73V VIHmin=1.84V VOLmax=0.37V VOHmin=2.2V 1.8V SD card:
VILmax=0.58V VIHmin=1.27V VOLmax=0.45V VOHmin=1.4V 2.95V SD card:
VILmax=0.73V VIHmin=1.84V VOLmax=0.37V VOHmin=2.2V SD_DET 45 DI SD card insertion detection VILmax=0.63V VIHmin=1.17V SD card insert detection signal. Active low. Touch Panel (TP) Interface Pin Name Pin No. I/O Description DC Characteristics Comment TP_INT 30 DI Interrupt signal of TP VILmax=0.63V VIHmin=1.17V 1.8V power domain TP_RST 31 DO Reset signal of TP VOLmax=0.45V VOHmin=1.35V 1.8V power domain Active low TP_I2C_SCL 47 TP_I2C_SDA 48 LCM Interface OD OD I2C clock signal of TP I2C data signal of TP 1.8V power domain Pin Name Pin No. I/O Description DC Characteristics Comment SC200R_Hardware_Design 23 / 125 Smart Module Series SC200R Hardware Design PWM 29 DO Adjust the backlight brightness. PWM control signal. VOLmax=0.45V VOHmax=VBAT_BB VOLmax=0.45V VOHmin=1.35V LCD_RST 49 DO LCD reset signal 1.8V power domain LCD_TE 50 DI LCD tearing effect signal VILmax=0.63V VIHmin=1.17V 1.8V power domain DSI_ CLK_N 52 DSI_ CLK_P 53 DSI_LN0_N 54 DSI_LN0_P 55 AO AO AO AO DSI_LN1_N 56 AO DSI_LN1_P 57 AO DSI_LN2_N 58 AO DSI_LN2_P 59 AO DSI_LN3_N 60 AO DSI_LN3_P 61 AO Camera Interfaces MIPI DSI clock signal (-) MIPI DSI clock signal (+) MIPI DSI data 0 signal (-) MIPI DSI data 0 signal (+) MIPI DSI data 1 signal (-) MIPI DSI data 1 signal (+) MIPI DSI data 2 signal (-) MIPI DSI data 2 signal (+) MIPI DSI data 3 signal (-) MIPI DSI data 3 signal (+) CSI1_CLK_N 63 CSI1_CLK_P 64 AI AI CAMERA MIPI clock signal (-) CAMERA MIPI clock signal (+) Pin Name Pin No. I/O Description DC Characteristics Comment SC200R_Hardware_Design 24 / 125 Smart Module Series SC200R Hardware Design CSI1_LN0_N 65 CSI1_LN0_P 66 CSI1_LN1_N 67 CSI1_LN1_P 68 CSI1_LN3_N 70 CSI1_LN3_P 71 CSI1_LN2_N 72 CSI1_LN2_P 73 AI AI AI AI AI AI AI AI CSI0_CLK_N 157 AI CSI0_CLK_P 196 AI CSI0_LN0_N 158 AI CSI0_LN0_P 197 AI CSI0_LN1_N 159 AI CSI0_LN1_P 198 AI CSI0_LN2_N 160 AI CSI0_LN2_P 199 AI CAMERA MIPI data 0 signal (-) CAMERA MIPI data 0 signal (+) CAMERA MIPI data 1 signal (-) CAMERA MIPI data 1 signal (+) CAMERA MIPI data 3 signal (-) CAMERA MIPI data 3 signal (+) CAMERA MIPI data 2 signal (-) CAMERA MIPI data 2 signal (+) CAMERA MIPI clock signal (-) CAMERA MIPI clock signal (+) CAMERA MIPI data 0 signal (-) CAMERA MIPI data 0 signal (+) CAMERA MIPI data 1 signal (-) CAMERA MIPI data 1 signal (+) CAMERA MIPI data 2 signal (-) CAMERA MIPI data 2 signal (+) SC200R_Hardware_Design 25 / 125 Smart Module Series SC200R Hardware Design CSI0_LN3_N 161 AI CSI0_LN3_P 200 AI CAMERA MIPI data 3 signal (-) CAMERA MIPI data 3 signal (+) CAM0_MCLK 74 DO Clock signal of camera VOLmax=0.45V VOHmin=1.35V 1.8V power domain CAM1_MCLK 75 DO Clock signal of camera VOLmax=0.45V VOHmin=1.35V 1.8V power domain CAM0_RST 79 DO Reset signal of camera VOLmax=0.45V VOHmin=1.35V 1.8V power domain CAM0_PWDN 80 DO Power down signal of camera VOLmax=0.45V VOHmin=1.35V 1.8V power domain CAM1_RST 81 DO Reset signal of camera VOLmax=0.45V VOHmin=1.35V 1.8V power domain CAM1_PWDN 82 DO Power down signal of camera VOLmax=0.45V VOHmin=1.35V 1.8V power domain CAM_I2C_SCL 83 CAM_I2C_ SDA 84 OD OD I2C clock signal of camera I2C data signal of camera CAM2_MCLK 165 DO CAM2_RST 164 DO CAM2_PWDN 163 DO Clock signal of camera Reset signal of camera VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V Power down signal of camera VOLmax=0.45V VOHmin=1.35V DCAM_I2C_ SCL DCAM_I2C_ SDA 166 OD 205 OD I2C clock signal of camera I2C data signal of camera Keypad Interfaces 1.8V power domain 1.8V power domain 1.8V power domain 1.8V power domain 1.8V power domain 1.8V power domain 1.8V power domain Pin Name Pin No. I/O Description DC Characteristics Comment PWRKEY 114 DI Turn on/off the module VILmax=0.63V VIHmin=1.17V Pull-up to 1.8V internally. Active low. SC200R_Hardware_Design 26 / 125 Smart Module Series SC200R Hardware Design Pin Name Pin No. I/O Description DC Characteristics Comment VILmax=0.63V VIHmin=1.17V VILmax=0.63V VIHmin=1.17V RESET_N 225 DI Reset the module VOL_UP 95 DI Volume up VOL_ DOWN 96 DI Volume down SENSOR_I2C Interfaces SENSOR_I2C_ SCL 91 OD SENSOR_I2C_ SDA 92 OD Charge Interface I2C clock signal for external sensor I2C data signal for external sensor BAT_SNS 133 AI BAT_THERM 134 AI Battery voltage detection Battery temperature detection BAT_ID 185 AI Battery type detection VOLmin=0.1V VOHmax=1.7V CHG_SEL 127 DI Used for charger selection Off by default and can be enabled via software configuration. If it is not used, keep it open. Cannot be pull up. 1.8V power domain If it is not used, keep it open. 1.8V power domain 1.8V power domain 1.8V power domain Maximum input voltage is 4.2V. Internally pulled up. Externally connected to GND via a NTC, If it is not used, connect a 47K resistor. Internal 100K pull down. If it is not used, keep it open. Keep it open, when charging with PM215. Connect this pin to GND when an external charging chip is used. Pin Name Pin No. I/O Description DC Characteristics Comment SC200R_Hardware_Design 27 / 125 Smart Module Series SC200R Hardware Design ADC Interface RF Interfaces Pin Name Pin No. I/O Description DC Characteristics Comment ADC 128 AI Generic ADC The maximum input voltage is 1.7V. Pin Name Pin No. I/O Description DC Characteristics Comment ANT_MAIN 87 AI/AO Main antenna ANT_DRX 131 Diversity antenna ANT_GNSS 121 GNSS antenna ANT_WIFI/BT 77 AI/AO Wi-Fi/BT antenna GPIO Interfaces 50 impedance Pin Name Pin No. I/O Description DC Characteristics Comment AI AI IO IO IO IO IO IO IO IO IO IO IO IO IO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO_33 GPIO_25 GPIO_130 GPIO_45 GPIO_48 GPIO_59 GPIO_12 GPIO_13 GPIO_95 GPIO_94 GPIO_87 GPIO_66 GPIO_43 33 90 97 98 99 100 101 102 103 104 105 106 107 VILmax=0.63V VIHmin=1.17V VOLmax=0.45V VOHmin=1.4V SC200R_Hardware_Design 28 / 125 Smart Module Series SC200R Hardware Design GPIO_63 GPIO_44 GPIO_42 GPIO_93 GPIO_46 GPIO_89 GPIO_23 GPIO_22 GPIO_21 GPIO_20 GPIO_62 GPIO_47 GPIO_6 GPIO_7 GPIO_34 GPIO_90 GPIO_39 GPIO_86 108 109 110 112 113 115 116 117 118 119 123 124 167 168 170 177 201 239 IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO GPIO_127 169 GPIO_88 264 IO GPIO GPIO_85 GPIO_61 265 267 IO IO GPIO GPIO GNSS_LNA ENABLE Interface This GPIO pin cannot be pulled up when the module is turned on. Pin Name Pin No. I/O Description DC Characteristics Comment SC200R_Hardware_Design 29 / 125 Smart Module Series SC200R Hardware Design Pin Name Pin No. I/O Description DC Characteristics Comment 194 IO GNSS_LNA_ EN GRFC Interfaces RFFE3_CLK 260 IO RFFE3_DATA 262 IO USB_BOOT Interface USB_BOOT 46 DI Motor Drive Interface External GNSS_LNA enable signal. GRFC can only be used for RF Tuner control. GRFC can only be used for RF Tuner control. Force the module to enter emergency download mode It cannot be multiplexed into a Generic GPIO. It cannot be multiplexed into a Generic GPIO. Pull up USB_BOOT to LDO5_1V8 will force the module enter emergency download mode. Pin Name Pin No. I/O Description DC Characteristics Comment Pin Name Pin No. I/O Description DC Characteristics Comment VIB_DRV_N 28 PO Motor drive Indication Interface VO=1.2V~3.1V IOmax=175mA Connected to the negative terminal of the motor. Pin Name Pin No. I/O Description DC Characteristics Comment CHG_LED 195 AO IOmax=5mA Charging indicator LED Other Interfaces Pin Name Pin No. I/O Description DC Characteristics Comment NFC_CLK 181 DO NFC clock signal NFC_CLK_ REQ 182 DI NFC clock request signal SC200R_Hardware_Design 30 / 125 Smart Module Series SC200R Hardware Design CBL_PWR_N 186 DI Reserved Interfaces Pull down the pin to realize the power-on automatic startup function It cannot be turned off when the pin is pulled down. If it is not used, keep it open. Pin Name Pin No. I/O Description DC Characteristics Comment RESERVED Reserved pins Keep these pins open. 150~152, 173~175, 178~180, 183,184, 192,232, 242,246, 249, 252~254, 257,263, 270 3.4. Power Supply 3.4.1. Power Supply Pins SC200R provides two VBAT_RF pins and two VBAT_BB pins for connecting with an external power supply. The VBAT_RF pins are used for the RF part of the module and the VBAT_BB pins are used for the baseband part of the module. 3.4.2. Decrease Voltage Drop The power supply range of the module is 3.55V~4.2V, and the recommended value is 3.8V. The power supply performance, such as load capacity, voltage ripple, etc. directly influences the modules performance and stability. Under ultimate conditions, the transient peak current of the module may surge up to 3A. If the supply voltage is not enough, there will be voltage drops, and if the voltage drops below 3.1V, the module will be turned off automatically. Therefore, please make sure the input voltage will never drop below 3.1V. SC200R_Hardware_Design 31 / 125 Smart Module Series SC200R Hardware Design Figure 2: Voltage Drop Sample To decrease voltage drop, a bypass capacitor of about 100F with low ESR (ESR=0.7) should be used, and a multi-layer ceramic chip capacitor (MLCC) should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array and place these capacitors close to VBAT_BB/RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 3 mm. In principle, the longer the VBAT trace is, the wider it will be. In addition, in order to get a stable power source, it is suggested to use a TVS and place it as close to the VBAT_BB/RF pins as possible to increase voltage surge withstand capability. The following figure shows the star structure of the power supply. Figure 3: Star Structure of the Power Supply SC200R_Hardware_Design 32 / 125 Smart Module Series SC200R Hardware Design 3.4.3. Reference Design for Power Supply The power design for the module is very important, as the performance of the module largely depends on the power source. The power supply of SC200R should be able to provide sufficient current up to 3A at least. If the voltage drop between the input and output is not too high, it is suggested to use an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is recommended. The following figure shows a reference design for +5V input power source which adopts an LDO
(MIC29502WU) from MICREL. The typical output voltage is 3.8V and the maximum load current is 5.0A. N E D N G J D A 1 3 5 Figure 4: Reference Circuit of Power Supply NOTES 1. It is suggested that customers should switch off the power supply for the module in an abnormal state, and then switch on the power to restart the module. 2. The module supports the battery charging function by default. If the above power supply design is adopted, please make sure the charging function is disabled by software or connect VBAT to Schottky diode in series to avoid the reverse current to the power supply chip. SC200R_Hardware_Design 33 / 125 Smart Module Series SC200R Hardware Design 3.5. Turn on and off Scenarios 3.5.1. Turn on Module Using the PWRKEY The module can be turned on by driving the PWRKEY pin to a low level for at least 1.6s. PWRKEY pin is pulled to 1.8V internally. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure. Figure 5: Turn on the Module Using Driving Circuit The other way to control the PWRKEY is by using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure. Figure 6: Turn on the Module Using Keystroke SC200R_Hardware_Design 34 / 125 Smart Module Series SC200R Hardware Design The turning on the scenario is illustrated in the following figure. Figure 7: Timing of Turning on Module NOTES shown above. 1. When the module is powered on for the first time, its timing of turning on may be different from that 2. Make sure that VBAT is stable before pulling down the PWRKEY pin. The recommended time between them is no less than 30ms. PWRKEY pin cannot be pulled down all the time. SC200R_Hardware_Design 35 / 125 Smart Module Series SC200R Hardware Design 3.5.2. Turn off Module Set the PWRKEY pin low for at least 1s, and then choose to turn off the module when the prompt window comes up. The other way to turn off the module is to drive PWRKEY to a low level for at least 8s. The module will execute the forced shutdown. The forced power-down scenario is illustrated in the following figure. Figure 8: Timing of Turning off Module 3.6. VRTC Interface The RTC (Real Time Clock) can be powered by an external power source through VRTC when the module is powered down and there is no power supply for the VBAT. The external power source can be a capacitor according to application demands. The following are some reference circuit designs when an external battery is utilized for powering RTC. Figure 9: RTC Powered by Coin Cell SC200R_Hardware_Design 36 / 125 Smart Module Series SC200R Hardware Design If RTC is ineffective, it can be synchronized through the network after the module is powered on. The recommended input voltage range for VRTC is 2.1V~3.25V and the recommended typical value is 3.0V. 3.7. Power Output SC200R supports the output of regulated voltages for peripheral circuits. During application, it is recommended to use parallel capacitors (33pF and 10pF) in the circuit to suppress high-frequency noise. Pin Name Default Voltage (V) Driving Current (mA) IDLE Table 3: Power Description LDO5_1V8 LDO6_1V8 LDO10_2V85 LDO17_2V85 LDO16_2V8 1.8 1.8 2.85 2.85 2.8 SD_LDO12 1.8/2.95 SD_LDO11 2.95 USIM1_VDD 1.8/2.95 USIM2_VDD 1.8/2.95 20 150 150 450 55 50 800 55 55 KEEP
3.8. Battery Charge and Management SC200R module can recharge batteries. The battery charger in the SC200R module supports trickle charging, constant current charging and constant voltage charging modes, which optimize the charging procedure for Li-ion batteries. Trickle charging: There are two steps in this mode. When the battery voltage is below 2.8V, a 90mA trickle charging current is applied to the battery. When the battery voltage is charged up and is between 2.8V and 3.2V, the charging current can be set to 450mA maximally. Constant current mode (CC mode): When the battery is increased to between 3.2V and 4.2V, the system will switch to CC mode. The maximum charging current is 1.44A when an adapter is used for SC200R_Hardware_Design 37 / 125 Smart Module Series SC200R Hardware Design battery charging, and the maximum charging current is 450mA for USB charging. Constant voltage mode (CV mode): When the battery voltage reaches the final value 4.2V, the system will switch to CV mode and the charging current will decrease gradually. When the battery level reaches 100%, the charging is completed. SC200R module supports battery temperature detection in the condition that the battery integrates a thermistor (47K 1% NTC thermistor with a B-constant of 4050K by default; SDNT1608X473F4050FTF of SUNLORD is recommended) and the thermistor is connected to VBAT_THERM pin. The default battery temperature range is -3.0 C~48.5 C. If the VBAT_THERM pin is not connected, there will be malfunctions such as battery charging failure, battery level display error, etc. A reference design for the battery charging circuit is shown below. Figure 10: Reference Design for Battery Charging Circuit Mobile devices such as mobile phones and handheld POS systems are powered by batteries. When different batteries are utilized, the charging and discharging curve has to be modified correspondingly so as to achieve the best effect. If the thermistor is not available in the battery, or adapter is utilized for powering the module, then there is only a need for VBAT and GND connection. In this case, the system may mistakenly judge that the battery temperature is abnormal, which will cause battery charging failure. In order to avoid this, VBAT_THERM should be connected to GND via a 47K resistor. If VBAT_THERM is unconnected, the system will be unable to detect the battery, making the battery cannot be charged. VBAT_SNS pin must be connected. Otherwise, the module will have abnormalities in voltage detection, as well as an associated power on/off and battery charging and discharging issues. SC200R_Hardware_Design 38 / 125 Smart Module Series SC200R Hardware Design 3.9. USB Interface SC200R contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, software debugging and firmware upgrade. The following table shows the pin definition of the USB interface. Table 4: Pin Definition of USB Interface Pin Name Pin No. I/O Description USB_VBUS 141, 142 PI USB power supply USB_DM 13 AI/AO USB 2.0 differential data bus (-) USB_DP 14 AI/AO USB differential data bus (+) Comment Vmax=6.2V Vmin=4.35V Vnorm=5.0V USB 2.0 standard compliant. 90 differential impedance. USB_ID 16 AI USB ID detection of the input For USB 2.0 interface design, it is recommended that USB_ID should be directly connected to the USB_ID pin of an external USB port for USB ID detection. When a device inserts an external USB port, if it pulls down the USB_ID pin of the module, the module will enter the Host mode. The following are two USB interface reference designs for customers to choose from. USB_VUSB USB_DM USB_DP Module C1 D1 D2 D3 100nF ESD ESD ESD 1 2 3 4 5 VUSB USB_DM USB_DP USB_ID GND Figure 11: USB Interface Reference Design (OTG is not Supported) SC200R_Hardware_Design 39 / 125 Smart Module Series SC200R Hardware Design SC200R supports OTG protocol. If the OTG function is needed, customers can refer to the above figure for the reference design. In this design, AW3605DNR is recommended. It is a high-efficiency DC-DC chip manufactured by AWINIC, and customers can choose according to their own demands. Figure 12: USB Interface Reference Design (OTG is Supported) In order to ensure USB performance, please comply with the following principles while designing a USB interface. It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90. Keep the ESD protection devices as close as possible to the USB connector. Pay attention to the influence of junction capacitance of ESD protection devices on USB data lines. Typically, the capacitance value should be less than 2pF. Do not route signal traces under crystals, oscillators, magnetic devices, and RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only the upper and lower layers but also the right and left sides. Make sure the trace length difference of USB 2.0 is not exceeding 0.7 mm. Table 5: USB Trace Length Inside the Module PIN 13 14 Signal Length (mm) Length Difference (DP-DM) USB_DM USB_DP 32.25 32.15
-0.10 SC200R_Hardware_Design 40 / 125 Smart Module Series SC200R Hardware Design 3.10. UART Interfaces SC200R provides three UART interfaces:
UART5: 4-wire UART interface, hardware flow control supported. UART2DEBUG: 2-wire UART interface; used for debugging by default. UART1: 2-wire UART interface Table 6: Pin Definition of UART Interfaces Pin Name Pin No Description Comment UART5_TXD 34 UART5 transmit data UART5_RXD 35 UART5 receive data UART5_CTS 36 UART5 clear to send UART5_RTS 37 DO UART5 request to send DBG_RXD 93 DBG_TXD 94 UART2 receive data. Debug port by default. UART2 transmit data. Debug port by default. UART1_RXD 153 UART1 receive data UART1_TXD 154 UART1 transmit data I/O DO DI DI DI DO DI DO 1.8V power domain. If unused, keep it open. UART5 is a 4-wire UART interface with 1.8V power domain. A level translator should be used if customers application is equipped with a 3.3V UART interface. A level translator TXS0104PWR provided by Texas Instruments is recommended. The following figure shows the reference design. Figure 13: Reference Circuit with Level Translator Chip (for UART5) SC200R_Hardware_Design 41 / 125 Smart Module Series SC200R Hardware Design The following figure is an example of a connection between SC200R and PC. A voltage level translator and an RS-232 level translator chip are also recommended to be added between the module and PC. The following figure shows the reference design. Figure 14: RS-232 Level Match Circuit (for UART5) NOTE UART2 and UART1 is similar to UART5. Please refer to UART5 reference circuit design for that of UART2 and UART1. 3.11. (U)SIM Interfaces SC200R provides 2 (U)SIM interfaces that meet ETSI and IMT-2000 requirements. Dual SIM Card Dual Standby is supported by default. Both 1.8V and 2.95V (U)SIM cards are supported, and the (U)SIM card interfaces are powered by the internal power supply of the SC200R module. Table 7: Pin Definition of (U)SIM Interfaces Pin Name Pin No I/O Description Comment USIM2_DET 17 DI
(U)SIM2 card hot-plug detection Active Low. An external pull-up resistor is required. If it is not used, keep it open. Enabled by default via software. It cannot be multiplexed into SC200R_Hardware_Design 42 / 125 Smart Module Series SC200R Hardware Design USIM2_RST 18 DO
(U)SIM2 card reset signal USIM2_CLK 19 DO
(U)SIM2 card clock signal USIM2_DATA 20 IO
(U)SIM2 card data signal USIM2_VDD 21 PO
(U)SIM2 card power supply USIM1_DET 22 DI
(U)SIM1 card hot-plug detection USIM1_RST 23 DO
(U)SIM1 card reset signal USIM1_CLK 24 DO
(U)SIM1 card clock signal USIM1_DATA 25 IO
(U)SIM1 card data signal USIM1_VDD 26 PO
(U)SIM1 card power supply a generic GPIO. It cannot be multiplexed into a generic GPIO. It cannot be multiplexed into a generic GPIO. It cannot be multiplexed into a generic GPIO. Either 1.8V or 2.95V (U)SIM card is supported. Active low. An external pull-up resistor is required. If it is not used, keep it open. Enabled by default via software. It cannot be multiplexed into a generic GPIO. It cannot be used as a generic GPIO. It cannot be multiplexed into a generic GPIO. It cannot be multiplexed into a generic GPIO. Either 1.8V or 2.95V (U)SIM card is supported. SC200R supports (U)SIM card hot-plug via the USIM_DET pin. A reference circuit for (U)SIM interface with an 8-pin (U)SIM card connector is shown below. Figure 15: Reference Circuit for (U)SIM Interface with an 8-pin (U)SIM Card Connector SC200R_Hardware_Design 43 / 125 Smart Module Series SC200R Hardware Design If there is no need to use USIM_DET, please keep this pin open. The following is a reference circuit for
(U)SIM interface with a 6-pin (U)SIM card connector. USIM_VDD R1 10K USIM_VDD USIM_RST USIM_CLK Module 22R R2 R3 22R 22R USIM_DATA R4 C1 100nF
(U)SIM card connector VCC RST CLK GND VPP IO C2 C3 C4 D1 22pF 22pF 22pF ESD Figure 16: Reference Circuit for (U)SIM Interface with a 6-pin (U)SIM Card Connector In order to ensure good performance and avoid damage of (U)SIM cards, please follow the criteria listed below during (U)SIM circuit design:
Keep placement of (U)SIM card connector as close to the module as possible. Keep the trace length of (U)SIM card signals as less than 200 mm as possible. Keep (U)SIM card signals away from RF and VBAT traces. A filter capacitor shall be reserved for USIM_VDD, and its maximum capacitance should not exceed 1F. The capacitor should be placed near to (U)SIM card. To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with ground. USIM_RST also needs ground protection. In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 50pF. The 22 resistors should be added in series between the module and (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector. The 22pF capacitors should be added in parallel on USIM_DATA, USIM_VDD, USIM_CLK and USIM_RST signal lines so as to filter RF interference, and they should be placed as close to the
(U)SIM card connector as possible. SC200R_Hardware_Design 44 / 125 Smart Module Series SC200R Hardware Design 3.12. SD Card Interface SC200R SD Card Interface supports the SD 3.0 protocol. The pin definition of the SD card interface is shown below. Table 8: Pin Definition of SD Card Interface Pin Name Pin No I/O Description Comment SD_CLK SD_CMD 39 40 SD_DATA0 41 SD_DATA1 42 SD_DATA2 43 SD_DATA3 44 I/O I/O I/O I/O DO High-speed digital clock signal of SD card I/O Command signal of SD card High-speed bidirectional digital signal lines of SD card 50 characteristic impedance SD_DET 45 DI SD card insertion detection Active low SD_LDO11 38 PO 2.95V output power supply Power supply for SD card SD_LDO12 32 PO 1.8V/2.95V output power supply Pull up for SD card only A reference circuit for the SD card interface is shown below. Figure 17: Reference Circuit for SD Card Interface SC200R_Hardware_Design 45 / 125 Smart Module Series SC200R Hardware Design SD_VDD is a peripheral driver power supply for an SD card. The maximum drive current is 800mA. Because of the high drive current, it is recommended that the trace width is 0.8 mm or above. In order to ensure the stability of drive power, a 4.7F and a 33pF capacitor should be added in parallel near the SD card connector. CMD, CLK, DATA0, DATA1, DATA2, and DATA3 are all high-speed signal lines. In PCB design, please control the characteristic impedance of them to 50, and do not cross them with other traces. It is recommended to route the trace on the inner layer of PCB and keep the same trace length for CLK, CMD, DATA0, DATA1, DATA2 and DATA3. CLK needs separate ground shielding. Layout guidelines:
Control impedance to 50 10% and ground shielding is required. The total trace length difference between CLK and other signal line traces like CMD and DATA should not exceed 1 mm. Table 9: SD Card Trace Length Inside the Module Pin No. Signal Length (mm) Comment SD_CLK SD_CMD SD_DATA0 SD_DATA1 SD_DATA2 SD_DATA3 21.50 21.40 21.45 21.60 21.40 21.35 39 40 41 42 43 44 SC200R_Hardware_Design 46 / 125 Smart Module Series SC200R Hardware Design 3.13. GPIO Interfaces SC200R has abundant GPIO interfaces with a power domain of 1.8V. The pin definition is listed below. Table 10: Pin Definition of GPIO Interfaces Pin Name Pin No GPIO Default state Comment GPIO_6 GPIO_7 GPIO_12 GPIO_13 GPIO_20 GPIO_21 GPIO_22 GPIO_23 GPIO_25 GPIO_33 GPIO_34 GPIO_39 GPIO_42 GPIO_43 GPIO_44 GPIO_45 GPIO_46 GPIO_47 GPIO_48 GPIO_59 GPIO_61 167 168 101 102 119 118 117 116 90 33 170 201 110 107 109 98 113 124 99 100 267 GPIO_6 B-PD:nppukp 1) GPIO_7 B-PD:nppukp GPIO_12 B-PD:nppukp Wakeup2) GPIO_13 B-PD:nppukp Wakeup GPIO_20 B-PD:nppukp GPIO_21 B-PD:nppukp Wakeup GPIO_22 B-PD:nppukp GPIO_23 B-PD:nppukp GPIO_25 B-PD:nppukp Wakeup GPIO_33 B-PD:nppukp GPIO_34 B-PD:nppukp Wakeup GPIO_39 B-PD:nppukp GPIO_42 B-PD:nppukp GPIO_43 B-PD:nppukp GPIO_44 B-PD:nppukp GPIO_45 B-PD:nppukp GPIO_46 B-PD:nppukp GPIO_47 B-PD:nppukp GPIO_48 B-PD:nppukp GPIO_59 B-PD:nppukp GPIO_61 B-PD:nppukp Wakeup Wakeup Wakeup Wakeup Wakeup Wakeup Wakeup Wakeup SC200R_Hardware_Design 47 / 125 Smart Module Series SC200R Hardware Design GPIO_62 GPIO_63 GPIO_66 GPIO_85 GPIO_86 GPIO_87 GPIO_88 GPIO_89 GPIO_90 GPIO_93 GPIO_94 GPIO_95 GPIO_127 GPIO_130 SD_DET TP_INT TP_RST TP_I2C_SCL TP_I2C_SDA LCD_RST LCD_TE CAM0_MCLK CAM1_MCLK CAM0_RST CAM0_PWDN CAM1_RST CAM1_PWDN 123 108 106 265 239 105 264 115 177 112 104 103 169 97 45 30 31 47 48 49 50 74 75 79 80 81 82 GPIO_62 B-PD:nppukp GPIO_63 B-PD:nppukp Wakeup Wakeup GPIO_86 B-PD:nppukp Wakeup GPIO_66 B-PD:nppukp GPIO_85 B-PD:nppukp GPIO_87 B-PD:nppukp GPIO_88 B-PD:nppukp GPIO_89 B-PD:nppukp GPIO_90 B-PD:nppukp GPIO_93 B-PD:nppukp GPIO_94 B-PD:nppukp GPIO_95 B-PD:nppukp Wakeup Wakeup GPIO_127 B-PD:nppukp GPIO_130 B-PD:nppukp Wakeup Wakeup GPIO_67 B-PD:nppukp Wakeup GPIO_65 B-PD:nppukp Wakeup GPIO_64 B-PD:nppukp GPIO_11 B-PD:nppukp GPIO_10 B-PD:nppukp GPIO_60 B-PD:nppukp GPIO_24 B-PD:nppukp GPIO_26 B-PD:nppukp GPIO_28 B-PD:nppukp GPIO_128 B-PD:nppukp Wakeup Wakeup GPIO_126 B-PD:nppukp Wakeup GPIO_129 B-PD:nppukp GPIO_125 B-PD:nppukp SC200R_Hardware_Design 48 / 125 CAM2_MCLK CAM2_RST CAM2_PWDN VOL_UP VOL_DOWN UART5_TXD UART5_RXD UART5_CTS UART5_RTS UART1_TXD UART1_RXD NOTES Smart Module Series SC200R Hardware Design 165 164 163 95 96 34 35 36 37 154 153 GPIO_27 B-PD:nppukp GPIO_38 B-PD:nppukp Wakeup GPIO_41 B-PD:nppukp GPIO_91 B-PD:nppukp Wakeup Wakeup GPIO_50 B-PD:nppukp Wakeup GPIO_16 B-PD:nppukp GPIO_17 B-PD:nppukp Wakeup GPIO_18 B-PD:nppukp GPIO_19 B-PD:nppukp GPIO_0 B-PD:nppukp GPIO_1 B-PD:nppukp Wakeup 1. 1) B: Bidirectional digital with CMOS input; PD:nppukp = default pulldown with programmable options following the colon (:). 2) Wakeup: interrupt pins that can wake up the system. 2. 3. More details about GPIO configuration, please refer to document [2]. 3.14. I2C Interfaces SC200R module provides four I2C interfaces. As an open-drain signal, the I2C interfaces need a pull-up resistor on its external circuit, and the recommended power domain is 1.8V. The SENSOR_I2C interface only supports sensors of the aDSP architecture. CAM_I2C/CAM2_I2C bus is controlled by Linux Kernel code, they can mount devices related to the video output. Table 11: Pin Definition of I2C Interfaces Pin Name Pin No I/O Description Comment TP_I2C_SCL TP_I2C_SDA 47 48 OD OD I2C clock signal of touch panel I2C data signal of touch panel Used for touch panel SC200R_Hardware_Design 49 / 125 Smart Module Series SC200R Hardware Design CAM_I2C_SCL CAM_I2C_SDA DCAM_I2C_ SCL DCAM_I2C_ SDA 83 84 166 205 I2C clock signal of camera I2C data signal of camera I2C clock signal of camera I2C data signal of camera Used for camera Used for camera SENSOR_I2C_SCL 91 I2C clock signal for external sensor Used for external SENSOR_I2C_SDA 92 I2C data signal for external sensor sensor OD OD OD OD OD OD 3.15. SPI Interfaces SC200R provides three SPI interfaces, which are multiplexed from UART and GPIO interfaces. These interfaces can only support the master mode. SPI interfaces can be used for fingerprint recognition. Table 12: Pin Definition of SPI Interfaces Pin Name Pin No I/O Description Comment UART5_RXD 35 SPI5 data input Can be multiplexed into SPI5_MISO UART5_TXD 34 SPI5 data output Can be multiplexed into SPI5_MOSI UART5_RTS 37 SPI5 clock signal Can be multiplexed into SPI5_CLK UART5_CTS 36 Can be multiplexed into SPI5_CS GPIO_22 117 Can be multiplexed into SPI6_CS SPI5 chip select signal SPI6 chip select signal GPIO_87 105 Can be multiplexed into SPI7_CS SPI7 chip select signal GPIO_23 GPIO_20 GPIO_21 GPIO_85 GPIO_88 GPIO_86 116 119 118 265 264 239 SPI6 clock signal Can be multiplexed into SPI6_CLK SPI6 data output Can be multiplexed into SPI6_MOSI SPI6 data input Can be multiplexed into SPI6_MISO SPI7 data output Can be multiplexed into SPI7_MOSI SPI7 clock signal Can be multiplexed into SPI7_CLK SPI7 data input Can be multiplexed into SPI7_MISO DI DO DO DO DO DO DO DI DO DO DO DI SC200R_Hardware_Design 50 / 125 Smart Module Series SC200R Hardware Design 3.16. ADC Interface SC200R supports a analog-to-digital converter (ADC) interface, and the pin definition is shown below. Table 13: Pin Definition of ADC Interfaces Pin Name Pin No I/O Description Comment The maximum input voltage is 1.7V. ADC 128 AI Generic ADC The resolution of the ADC is up to 15 bits. 3.17. Motor Drive Interface The pin of the motor drive interface is listed below. Table 14: Pin Definition of Motor Drive Interface Pin Name Pin No I/O Description Comment VIB_DRV_N 28 PO Motor drive Connected to the negative pole of the motor The motor is driven by an exclusive circuit, and a reference circuit is shown below. Figure 18: Reference Circuit for Motor Connection SC200R_Hardware_Design 51 / 125 Smart Module Series SC200R Hardware Design When the motor stops working and the VIB_DRV is disconnected, the redundant electricity on the motor can be discharged from the circuit loop formed by diodes, thus avoiding component damages. 3.18. LCM Interface SC200R provides an LCM interface, which is MIPI_DSI standard compliant. The interface supports high-speed differential data transmission and supports HD+ display (1440x720 @60fps). The pin definition of the LCM interface is shown below. Table 15: Pin Definition of LCM Interface Pin Name Pin No I/O Description Comment LDO17_2V85 129 PO PWM LCD_RST LCD_TE DSI_ CLK_N DSI_ CLK_P DSI_LN0_N DSI_LN0_P DSI_LN1_N DSI_LN1_P DSI_LN2_N DSI_LN2_P DSI_LN3_N DSI_LN3_P 29 49 50 52 53 54 55 56 57 58 59 60 61 2.85V output power supply for LCM VCC DO Adjust the backlight brightness PWM control signal DO LCD reset signal DI LCD tearing effect signal AO LCD MIPI clock signal (-) AO LCD MIPI clock signal (+) AO LCD MIPI data signal 0 (-) AO LCD MIPI data signal 0 (+) AO LCD MIPI data signal 1 (-) AO LCD MIPI data signal 1 (+) AO LCD MIPI data signal 2 (-) AO LCD MIPI data signal 2 (+) AO LCD MIPI data signal 3 (-) AO LCD MIPI data signal 3 (+) SC200R_Hardware_Design 52 / 125 Smart Module Series SC200R Hardware Design A reference circuit for the LCM interface is shown below. Figure 19: Reference Circuit Design for LCM Interface MIPI is high-speed signal lines. It is recommended that common-mode filters should be added in series near the LCM connector, so as to improve protection against electromagnetic radiation interference. ICMEF112P900MFR using ICT is recommended. It is recommended to read the LCM ID register through MIPI when compatible design with other displays is required. If several LCM models share the same IC, it is recommended that the LCM module factory burn the OTP register to distinguish different screens. Customers can also select the LCD_ID pin of LCM to connect the ADC pin of the SC200R module, but it should be noted that the output voltage of LCD_ID should not exceed the voltage range of the ADC pin. The external backlight driving circuit needs to be designed for LCM, and a reference circuit design is shown in the following figure. The backlight brightness adjustment can be realized by the PWM pin of the SC200R module by adjusting the duty ratio. SC200R_Hardware_Design 53 / 125 Smart Module Series SC200R Hardware Design VBAT C1 2.2F PWM Module Backlight driver LCM_LED+
LCM_LED-
Figure 20: Reference Design for External Backlight Driving Circuit 3.19. Touch Panel Interface SC200R provides one I2C interface for connection with Touch Panel (TP), and also provides the corresponding power supply and interrupt pins. The definitions of TP interface pins are illustrated below. Table 16: Pin Definition of Touch Panel Interface Pin Name Pin No I/O Description Comment LDO17_2V85 129 PO LDO6_1V8 125 PO TP_INT TP_RST TP_I2C_SCL TP_I2C_SDA 30 31 47 48 DI DO OD OD 2.85V output power supply for TP VDD Vnorm=2.85V IOmax=450mA 1.8V output power supply for TP I/O power The pull-up power supply of I2C. Interrupt signal of TP VILmax=0.63V VIHmin=1.17V Reset signal of TP I2C clock signal of TP 1.8V voltage domain I2C data signal of TP 1.8V voltage domain SC200R_Hardware_Design 54 / 125 Smart Module Series SC200R Hardware Design A reference circuit for the TP interface is shown below. Figure 21: Reference Circuit Design for TP Interface 3.20. Camera Interfaces Based on the standard MIPI CSI video input interface, the SC200R module supports two cameras (4-lane
+ 4-lane) or three cameras (4-lane + 2-lane + 1-lane), and the maximum pixel of the camera can be up to 13MP. The video and photo quality is determined by various factors such as the camera sensor, camera lens quality, etc. Table 17: Pin Definition of Camera Interface Pin Name Pin No I/O Description LDO6_1V8 125 PO LDO17_2V85 129 PO CSI1_CLK_N CSI1_CLK_P CSI1_LN0_N 63 64 65 AI AI AI 1.8V output power supply for DOVDD of camera 2.85V output power supply for AVDD of camera CAMERA MIPI clock signal (-) CAMERA MIPI clock signal (+) CAMERA MIPI data0 signal (-) Comment Vnorm=1.8V IOmax=150mA Vnorm=2.85V IOmax=450mA SC200R_Hardware_Design 55 / 125 Smart Module Series SC200R Hardware Design CSI1_LN0_P CSI1_LN1_N CSI1_LN1_P CSI1_LN3_N CSI1_LN3_P CSI1_LN2_N CSI1_LN2_P CSI0_CLK_N CSI0_CLK_P CSI0_LN0_N CSI0_LN0_P CSI0_LN1_N CSI0_LN1_P CSI0_LN2_N CSI0_LN2_P CSI0_LN3_N CSI0_LN3_P CAM0_MCLK CAM1_MCLK CAM0_RST CAM0_PWDN CAM1_RST CAM1_PWDN CAM_I2C_SCL CAM_I2C_SDA 66 67 68 70 71 72 73 157 196 158 197 159 198 160 199 161 200 74 75 79 80 81 82 83 84 AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI AI DO DO DO DO DO DO OD OD CAMERA MIPI data0 signal (+) CAMERA MIPI data1 signal (-) CAMERA MIPI data1 signal (+) CAMERA MIPI data3 signal (-) CAMERA MIPI data3 signal (+) CAMERA MIPI data2 signal (-) CAMERA MIPI data2 signal (+) CAMERA MIPI clock signal (-) CAMERA MIPI clock signal (+) CAMERA MIPI data0 signal (-) CAMERA MIPI data0 signal (+) CAMERA MIPI data1 signal (-) CAMERA MIPI data1 signal (+) CAMERA MIPI data2 signal (-) CAMERA MIPI data2 signal (+) CAMERA MIPI data3 signal (-) CAMERA MIPI data3 signal (+) Clock signal of camera Clock signal of camera Reset signal of camera Power down signal of camera Reset signal of camera Power down signal of camera I2C clock signal of camera I2C data signal of camera SC200R_Hardware_Design 56 / 125 Smart Module Series SC200R Hardware Design CAM2_MCLK CAM2_RST CAM2_PWDN 165 164 163 Clock signal of camera Reset signal of camera Power down signal of camera DCAM_I2C_SDA 205 I2C data signal of camera DCAM_I2C_SCL 166 I2C clock signal of camera DO DO DO OD OD SC200R_Hardware_Design 57 / 125 Smart Module Series SC200R Hardware Design The following is a reference circuit design for cameras. Figure 22: Reference Circuit Design for Cameras SC200R_Hardware_Design 58 / 125 Smart Module Series SC200R Hardware Design NOTE CSI1_LN3_P and CSI1_LN3_N of CSI1 can be used as the CLK_P and CLK_N of the camera 1, CSI1_LN2_P and CSI1_LN2_N can be used as the LN_P and LN_N of the camera 1. 3.20.1. Design Considerations Special attention should be paid to the pin definition of LCM/camera connectors. Assure the SC200R and the connectors are correctly connected . MIPI is high speed signal lines, supporting maximum data rate up to 2.1Gbps. The differential impedance should be controlled to 100. Additionally, it is recommended to route the trace on the inner layer of PCB, and do not cross it with other traces. For the same group of DSI or CSI signals, all the MIPI traces should keep the same length. In order to avoid crosstalk, a distance of 1.5 times the trace width among MIPI signal lines is recommended. During impedance matching, do not connect GND on different planes so as to ensure impedance consistency. It is recommended to select a low capacitance TVS for ESD protection and the recommended parasitic capacitance should be below 1pF. Route MIPI traces according to the following rules:
a) The total trace length should not exceed 305mm;
b) Control the differential impedance to 100 10%;
c) Control intra-lane length difference within 0.67 mm;
d) Control inter-lane length difference within 1.3 mm. Table 18: MIPI Trace Length Inside the Module Pin Name Pin No Length (mm) Length Difference (P-N) DSI_CLK_N DSI_CLK_P DSI_LN0_N DSI_LN0_P DSI_LN1_N DSI_LN1_P DSI_LN2_N DSI_LN2_P 12.40 12.40 11.75 11.65 9.40 9.30 9.60 9.60 DSI_LN3_N 12.35 0.00
-0.10
-0.10 0.00 0.00 52 53 54 55 56 57 58 59 60 SC200R_Hardware_Design 59 / 125 Smart Module Series SC200R Hardware Design DSI_LN3_P CSI1_CLK_N CSI1_CLK_P CSI1_LN0_N CSI1_LN0_P CSI1_LN1_N CSI1_LN1_P CSI1_LN3_N CSI1_LN3_P CSI1_LN2_N CSI1_LN2_P CSI0_CLK_N CSI0_CLK_P CSI0_LN0_N CSI0_LN0_P CSI0_LN1_N CSI0_LN1_P CSI0_LN2_N CSI0_LN2_P CSI0_LN3_N CSI0_LN3_P 12.35 18.10 18.05 18.05 18.10 18.15 18.20 18.10 18.20 18.05 18.10 22.60 22.55 22.55 22.50 20.25 20.30 20.50 20.50 12.95 12.95
-0.05 0.05 0.05 0.10 0.05
-0.05
-0.05 0.05 0.00 0.00 61 63 64 65 66 67 68 70 71 72 73 157 196 158 197 159 198 160 199 161 200 SC200R_Hardware_Design 60 / 125 Smart Module Series SC200R Hardware Design 3.21. Sensor Interfaces SC200R module supports communication with sensors via I2C interfaces, and it supports ALS/PS, compass, G-sensor, and gyroscopic sensors. Table 19: Pin Definition of Sensor Interfaces Pin Name Pin No I/O Description Comment SENSOR_I2C_SCL 91 OD SENSOR_I2C_SDA 92 OD I2C clock signal for external sensor I2C data signal for external sensor Dedicated for external sensors;
cannot be used on touch panel, NFC, I2C keyboard, etc. GPIO_43 GPIO_44 GPIO_42 GPIO_63 107 109 110 108 DI DI DI DI Light sensor interrupt signal Compass sensor interrupt signal Accelerate sensor interrupt signal Gyroscope sensor interrupt signal 3.22. Audio Interfaces SC200R module provides three analog input channels and three analog output channels. The following table shows the pin definition. Table 20: Pin Definition of Audio Interfaces Pin Name Pin No I/O Description Comment MIC1_P MIC_GND MIC2_P 4 5 6 AI AI Main microphone input (+) MIC reference ground Headphone microphone input (+) If unused, connect to ground MIC_BIAS2 155 Microphone bias voltage 2 SC200R_Hardware_Design 61 / 125 Smart Module Series SC200R Hardware Design MIC3_P MIC_BIAS1 EAR_P EAR_N SPK_P SPK_N HPH_R HPH_REF HPH_L HS_DET 148 147 8 9 10 11 136 137 138 139 AI AO AO AO AO AO AO AI Secondary microphone input (+) Microphone bias voltage 1 Earpiece output (+) Earpiece output (-) Speaker output (+) Speaker output (-) Headphone right channel output Headphone reference ground Headphone left channel output Headset insertion detection High level by default The module offers three audio input channels, including three single-ended channels. The output voltage range of two MIC_BIAS is programmable between 1.6V and 2.85V, and the maximum output current is 3mA. The earpiece interface uses differential output. The loudspeaker interface uses the differential output as well. The output channel is available with a Class-D amplifier whose output power is 1362mW when load is 8. The headphone interface features stereo left and right channel output, and headphone insert detection function is supported. SC200R_Hardware_Design 62 / 125 Smart Module Series SC200R Hardware Design 3.22.1. Reference Circuit Design for Microphone Interfaces Figure 23: Reference Circuit Design for ECM Microphone Interfaces Figure 24: Reference Circuit Design for MEMS Microphone Interfaces SC200R_Hardware_Design 63 / 125 Smart Module Series SC200R Hardware Design 3.22.2. Reference Circuit Design for Receiver Interface Figure 25: Reference Circuit Design for Receiver Interface 3.22.3. Reference Circuit Design for Headphone Interface Figure 26: Reference Circuit Design for Headphone Interface SC200R_Hardware_Design 64 / 125 Smart Module Series SC200R Hardware Design 3.22.4. Reference Circuit Design for Loudspeaker Interface Figure 27: Reference Circuit Design for Loudspeaker Interface 3.22.5. Audio Interfaces Design Considerations It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10pF and 33pF) for filtering out RF interference, thus reducing TDD noise. The 33pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900. Without placing this capacitor, TDD noise could be heard. The 10pF capacitor here is used for filtering out RF interference at DCS1800. Please note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customers would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises. The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, a suitable capacitor should be selected based on the test results. Sometimes, even no RF filtering capacitor is required. In order to decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces. The differential audio traces must be routed according to the differential signal layout rule. SC200R_Hardware_Design 65 / 125 Smart Module Series SC200R Hardware Design 3.23. Emergency Download Interface USB_BOOT is an emergency download interface. Pull up to LDO5_1V8 during power-up will force the module to enter emergency download mode. There is an emergency option when failures such as abnormal start-up or running occur. For the convenient firmware upgrade and debugging in the future, please reverse this pin. The reference circuit design is shown below. Figure 28: Reference Circuit Design for Emergency Download Interface SC200R_Hardware_Design 66 / 125 Smart Module Series SC200R Hardware Design 4 Wi-Fi and BT SC200R provides a shared antenna interface ANT_WIFI/BT for Wi-Fi and Bluetooth (BT) functions. The interface impedance is 50. External antennas such as PCB antenna, sucker antenna, and ceramic antenna can be connected to the module via the interface, so as to achieve Wi-Fi and BT functions. 4.1. Wi-Fi Overview SC200R supports 2.4GHz/5GHz double-band WLAN wireless communication based on IEEE 802.11a/b/g/n standard protocols. The maximum data rate is up to 150Mbps. The features are as below:
Support Wake-on-WLAN (WoWLAN) Support ad hoc mode Support WAPI SMS4 hardware encryption Support AP mode Support Wi-Fi Direct Support MCS 0-7 for HT20 and HT40 4.1.1. Wi-Fi Performance The following table lists the Wi-Fi transmitting and receiving performance of the SC200R module. Table 21: Wi-Fi Transmitting Performance Standard 2.4GHz 802.11b 802.11b 802.11g 802.11g 802.11n HT20 802.11n HT20 Rate 1Mbps 11Mbps 6Mbps 54Mbps MCS0 MCS7 Output Power 16dBm 2.5dB 16dBm 2.5dB 16dBm 2.5dB 14dBm 2.5dB 15dBm 2.5dB 13dBm 2.5dB SC200R_Hardware_Design 67 / 125 Smart Module Series SC200R Hardware Design 54Mbps 13dBm 2.5dB Table 22: Wi-Fi Receiving Performance 5GHz 2.4GHz 5GHz 802.11n HT40 802.11n HT40 802.11a 802.11a 802.11n HT20 802.11n HT20 802.11n HT40 802.11n HT40 Standard 802.11b 802.11b 802.11g 802.11g 802.11n HT20 802.11n HT20 802.11n HT40 802.11n HT40 802.11a 802.11a 802.11n HT20 802.11n HT20 802.11n HT40 802.11n HT40 MCS0 MCS7 6Mbps MCS0 MCS7 MCS0 MCS7 Rate 1Mbps 11Mbps 6Mbps 54Mbps MCS0 MCS7 MCS0 MCS7 6Mbps 54Mbps MCS0 MCS7 MCS0 MCS7 14dBm 2.5dB 13dBm 2.5dB 15dBm 2.5dB 14dBm 2.5dB 12dBm 2.5dB 14dBm 2.5dB 12dBm 2.5dB Sensitivity
-96
-87
-91
-73
-90
-72 TBD TBD
-89
-73 TBD TBD
-89
-71 SC200R_Hardware_Design 68 / 125 Smart Module Series SC200R Hardware Design Referenced specifications are listed below:
IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June 2007 IEEE Std 802.11b, IEEE Std 802.11d, IEEE Std 802.11e, IEEE Std 802.11g, IEEE Std 802.11i: IEEE 802.11-2007 WLAN MAC and PHY, June 2007 4.2. BT Overview SC200R module supports BT4.2 (BR/EDR+BLE) specification, as well as GFSK, 8-DPSK, /4-DQPSK modulation modes. Maximally support up to 7 wireless connections. Maximally support up to 3.5 PICONETs at the same time. Support one SCO (Synchronous Connection Oriented) or eSCO connection. The BR/EDR channel bandwidth is 1MHz, and can accommodate 79 channels. The BLE channel bandwidth is 2MHz, and can accommodate 40 channels. Table 23: BT Data Rate and Version Version Data rate Maximum Application Throughput Comment 1.2 1 Mbit/s
> 80 Kbit/s 2.0+EDR 3 Mbit/s
> 80 Kbit/s 3.0+HS 24 Mbit/s Reference 3.0 + HS 4.0 24 Mbit/s Reference 4.0 LE Referenced specifications are listed below:
Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1+ EDR/3.0/3.0 + HS, August 6, 2009 Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009 SC200R_Hardware_Design 69 / 125 Smart Module Series SC200R Hardware Design 4.2.1. BT Performance The following table lists the BT transmitting and receiving performance of SC200R module. Table 24: BT Transmitting and Receiving Performance Transmitter Performance Packet Types DH5 2-DH5 3-DH5 Transmitting Power 10dBm2.5dB 8dBm2.5dB 8dBm2.5dB Receiver Performance Packet Types DH5 Receiving Sensitivity
-93 2-DH5
-92 3-DH5
-88 SC200R_Hardware_Design 70 / 125 Smart Module Series SC200R Hardware Design 5 GNSS SC200R integrates a Qualcomm IZat GNSS engine (GEN 8C) which supports multiple positioning and navigation systems including GPS, GLONASS, and BeiDou. With an embedded LNA, the module provides greatly improved positioning accuracy. 5.1. GNSS Performance The following table lists the GNSS performance of the SC200R module in conduction mode. Table 25: GNSS Performance Parameter Description Sensitivity (GNSS) Reacquisition Cold start Tracking Cold start Hot start TTFF (GNSS) Warm start Static Drift (GNSS) CEP-50 Typ.
-145
-157
-157 30 23 3.3
<2.5 Unit dBm dBm dBm s s s m SC200R_Hardware_Design 71 / 125 Smart Module Series SC200R Hardware Design 5.2. GNSS RF Design Guidelines Bad design of antenna and layout may cause reduced GPS receiving sensitivity, longer GPS positioning time, or reduced positioning accuracy. In order to avoid this, please follow the reference design rules as below:
Maximize the distance between the GNSS RF part and the GPRS RF part (including trace routing and antenna layout) to avoid mutual interference. In user systems, GNSS RF signal lines and RF components should be placed far away from high-speed circuits, switched-mode power supplies, power inductors, the clock circuit of single-chip microcomputers, etc. For applications with a harsh electromagnetic environment or with high requirement on ESD protection, it is recommended to add ESD protection diodes for the antenna interface. Only diodes with ultra-low junction capacitance such as 0.5pF can be selected. Otherwise, there will be effects on the impedance characteristic of the RF circuit loop or attenuation of the bypass RF signal may be caused. Control the impedance of either feeder line or PCB trace to 50, and keep the trace length as short as possible. Refer to Chapter 6.3 for the GNSS reference circuit design. SC200R_Hardware_Design 72 / 125 Smart Module Series SC200R Hardware Design 6 Antenna Interfaces SC200R provides four antenna interfaces for the main antenna, Rx-diversity/MIMO antenna, GNSS antenna and Wi-Fi/BT antenna, respectively. The antenna ports have an impedance of 50. 6.1. Main/Rx-diversity Antenna Interfaces The pin definition of main/Rx-diversity antenna interfaces is shown below. Table 26: Pin Definition of Main/Rx-diversity Antenna Interfaces Pin Name Pin No. Description Comment I/O IO AI ANT_MAIN 87 Main antenna ANT_DRX 131 Diversity antenna The operating frequencies of SC200R are listed in the following tables Table 27: SC200R-CE Operating Frequencies 50 impedance 3GPP Band EGSM900 DCS1800 Receive 925~960 1805~1880 1710~1785 WCDMA B1 2110~2170 1920~1980 Transmit 880~915 880~915 824~849 WCDMA B8 925~960 EVDO/CDMA BC0 869~894 LTE-FDD B1 2110~2170 1920~1980 LTE-FDD B3 1805~1880 1710~1785 Unit MHz MHz MHz MHz MHz MHz MHz SC200R_Hardware_Design 73 / 125 Smart Module Series SC200R Hardware Design LTE-FDD B5 LTE-FDD B8 869~894 925~960 824~849 880~915 LTE-TDD B34 2010~2025 2010~2025 LTE-TDD B38 2570~2620 2570~2620 LTE-TDD B39 1880~1920 1880~1920 LTE-TDD B40 2300~2400 2300~2400 LTE-TDD B41 2555~2655 2555~2655 Table 28: SC200R-EM* Operating Frequencies 3GPP Band GSM850 EGSM900 DCS1800 PCS1900 Receive 869~894 925~960 Transmit 824~849 880~915 1805~1880 1710~1785 1930~1990 1850~1910 WCDMA B1 2110~2170 1920~1980 WCDMA B2 1930~1990 1850~1910 WCDMA B5 WCDMA B8 869~894 925~960 824~849 880~915 LTE-FDD B1 2110~2170 1920~1980 LTE-FDD B2 1930~1990 1850~1910 LTE-FDD B3 1805~1880 1710~1785 LTE-FDD B5 869~894 824~849 LTE-FDD B7 2620~2690 2500~2570 LTE-FDD B8 LTE-FDD B20 925~960 791~821 880~915 832~862 MHz MHz MHz MHz MHz MHz MHz Unit MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz SC200R_Hardware_Design 74 / 125 Smart Module Series SC200R Hardware Design LTE-FDD B28 ()A+B) 758~803 703~748 LTE-TDD B38 2570~2620 2570~2620 LTE-TDD B39 1880~1920 1880~1920 LTE-TDD B40 2300~2400 2300~2400 LTE-TDD B41 2555~2655 2555~2655 Table 29: SC200R-NA* Operating Frequencies 3GPP Band Receive WCDMA B2 WCDMA B4 1930~1990 2110~2155 WCDMA B5 869~894 LTE-FDD B2 1930~1990 LTE-FDD B4 2110~2155 LTE-FDD B5 869~894 LTE-FDD B12 LTE-FDD B13 LTE-FDD B14 LTE-FDD B17 729~746 746~756 758~768 734~746 Transmit 1850~1910 1710~1755 824~849 1850~1910 1710~1755 824~849 699~716 777~787 788~798 704~716 LTE-FDD B7 2620~2690 2500~2570 LTE-FDD B25 1930~1995 1850~1915 LTE-FDD B26 859~894 814~849 LTE-FDD B66 2100~2200 1710~1780 LTE-FDD B71 663~698 617~652 LTE-TDD B41 2496~2690 2496~2690 MHz MHz MHz MHz MHz Unit MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz SC200R_Hardware_Design 75 / 125 Smart Module Series SC200R Hardware Design Table 30: SC200R-JP* Operating Frequencies 3GPP Band Receive Transmit WCDMA B1 2110~2170 1920~1980 WCDMA B6 WCDMA B8 WCDAM B19 LTE-FDD B5 LTE-FDD B8 LTE-FDD B18 LTE-FDD B19 LTE-FDD B26 LTE-FDD B28 LTE-FDD B1 2110~2170 LTE-FDD B3 1805~1880 LTE-FDD B11 1428~1447 1475~1495 875~885 925~960 875~890 869~894 925~960 860~875 875~890 859~894 758~803 830~840 880~915 830~845 1920~1980 1710~1785 824~849 880~915 815~830 830~845 814~849 703~748 LTE-TDD B41 2496~2690 2496~2690 NOTE
* means under development. Unit MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz 6.1.1. Main and Rx-diversity Antenna Interfaces Reference Design A reference circuit design for main and Rx-diversity antenna interfaces is shown as below. A -type matching circuit should be reserved for better RF performance. The -type matching components
(R1/C1/C2, R2/C3/C4) should be placed as close to the antennas as possible and are mounted according to the actual debugging. The C1, C2, C3, and C4 are not mounted and a 0 resistor is mounted on R1 and R2 respectively by default. SC200R_Hardware_Design 76 / 125 Smart Module Series SC200R Hardware Design Figure 29: Reference Circuit Design for Main and Rx-diversity Antenna Interfaces 6.1.2. Reference Design of RF Layout For users PCB, the characteristic impedance of all RF traces should be controlled to 50. The impedance of the RF traces is usually determined by the trace width (W), the materials dielectric constant, height from the reference ground to the signal layer (H), and the clearance between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip line or coplanar waveguide with different PCB structures. Figure 30: Microstrip Design on a 2-layer PCB SC200R_Hardware_Design 77 / 125 Smart Module Series SC200R Hardware Design Figure 31: Coplanar Waveguide Design on a 2-layer PCB Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground) Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground) SC200R_Hardware_Design 78 / 125 Smart Module Series SC200R Hardware Design In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:
Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50. connected to ground. The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones. There should be clearance under the signal pin of the antenna connector or solder joint. The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times as wide as RF signal traces (2 x W). For more details about the RF layout, please refer to the document [3]. 6.2. Wi-Fi/BT Antenna Interface The following tables show the pin definition and frequency specification of the Wi-Fi/BT antenna interface. Table 31: Pin Definition of Wi-Fi/BT Antenna Interface Pin Name Pin No. I/O Description Comment ANT_WIFI/BT 77 IO Wi-Fi/BT antenna interface 50 impedance Table 32: Wi-Fi/BT Frequency Type Wi-Fi (2.4GHz) Frequency 2402~2482 Wi-Fi (5GHz) 5180~5825 BT4.2 LE 2402~2480 Unit MHz MHz MHz SC200R_Hardware_Design 79 / 125 Smart Module Series SC200R Hardware Design A reference circuit design for Wi-Fi/BT antenna interface is shown as below. C1 and C2 are not mounted and a 0 resistor is mounted on R1 by default. Figure 34: Reference Circuit Design for Wi-Fi/BT Antenna 6.3. GNSS Antenna Interface The following tables show pin definition and frequency specification of GNSS antenna interface. Table 33: Pin Definition of GNSS Antenna Interface Pin Name Pin No. Description Comment ANT_GNSS 121 GNSS antenna interface 50 impedance I/O AI Table 34: GNSS Frequency Type GPS Frequency 1575.42 1.023 GLONASS 1597.5~1605.8 BeiDou 1561.098 2.046 Unit MHz MHz MHz SC200R_Hardware_Design 80 / 125 Smart Module Series SC200R Hardware Design 6.3.1. Recommended Circuit for Passive Antenna GNSS antenna interface supports passive ceramic antennas and other types of passive antennas. A reference circuit design is given below. Figure 35: Reference Circuit Design for GNSS Passive Antenna NOTE When the passive antenna is placed far away from the module (that is, the antenna trace is long), it is recommended to add an external LNA circuit for better GNSS receiving performance, and the LNA should be placed close to the antenna. 6.3.2. Recommended Circuit for Active Antenna The active antenna is powered by a 56nH inductor through the antenna's signal path. The common power supply voltage ranges from 3.3V to 5.0V. Although featuring low power consumption, the active antenna still requires stable and clean power supplies. It is recommended to use high-performance LDO as the power supply. A reference design of the GNSS active antenna is shown below. Figure 36: Reference Circuit Design for GNSS Active Antenna SC200R_Hardware_Design 81 / 125 Smart Module Series SC200R Hardware Design The following table shows the requirement on the main antenna, RX-diversity antenna, Wi-Fi/BT antenna and a GNSS antenna. 6.4. Antenna Installation 6.4.1. Antenna Requirements Table 35: Antenna Requirements Type Requirements GSM/WCDMA/TD-SCDMA/
LTE VSWR:> 2 Gain (dBi): 1 Max Input Power (W): 50 Input Impedance (): 50 Polarization Type: Vertical Cable Insertion Loss: < 1dB
(GSM850, EGSM900, WCDMA B5/B6/B8/B19, EVDO/CDMA BC0, LTE B5/B8/B12/B13/B14/B17/B18/B19/B20/B26/B28A/B28B/B71) Cable Insertion Loss: < 1.5dB
(DCS1800, PCS1900, WCDMA B1/B2/B4, LTE B1/B2/B3/B4/B11/B21/B25/B34/B39/B66) Cable Insertion Loss: < 2dB
(LTE-FDD B7, LTE-TDD B38/B40/B41) VSWR: 2 Gain (dBi): 1 Max Input Power (W): 50 Input Impedance (): 50 Polarization Type: Vertical Cable Insertion Loss: < 1dB Frequency range: 1559MHz~1609MHz Polarization: RHCP or linear VSWR: < 2 (Typ.) Passive Antenna Gain: > 0dBi Active Antenna Noise Figure: < 1.5dB Active Antenna Total Gain: < 17dBi (Typ.) Wi-Fi/BT GNSS 1) NOTE 1) It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance. SC200R_Hardware_Design 82 / 125 Smart Module Series SC200R Hardware Design 6.4.2. Recommended RF Connector for Antenna Installation If an RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by HIROSE. Figure 37: Dimensions of the U.FL-R-SMT Connector (Unit: mm) U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT. Figure 38: Mechanicals of U.FL-LP Connectors SC200R_Hardware_Design 83 / 125 Smart Module Series SC200R Hardware Design The following figure describes the space factor of mated connector. Figure 39: Space Factor of Mated Connectors (Unit: mm) For more details, please visit http://www.hirose.com. SC200R_Hardware_Design 84 / 125 Smart Module Series SC200R Hardware Design 7 Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table. Table 36: Absolute Maximum Ratings Parameter VBAT USB_VBUS Peak Current of VBAT Voltage on Digital Pins Min.
-0.5
-0.5 0
-0.3 Max. Unit 6 16 3 2.16 V V A V 7.2. Power Supply Ratings Table 37: SC200R Module Power Supply Ratings Parameter Description Conditions Min. Typ. Max. Unit VBAT 3.55 3.8 4.2 V VBAT Voltage drop during transmitting burst The actual input voltages must stay between the minimum and maximum values Maximum power control level at EGSM900 400 mV SC200R_Hardware_Design 85 / 125 Smart Module Series SC200R Hardware Design Maximum power control level at EGSM900 1.8 3.0 A USB_VBUS USB detection 4.35 5.0 6.2 V IVBAT VRTC Peak supply current (during transmission slot) Power supply voltage of the backup battery 2.0 3.0 3.25 V 7.3. Operation and Storage Temperatures The operating temperature is listed in the following table. Table 38: Operation and Storage Temperatures Parameter Min. Max. Unit Operating temperature range 1)
-35 Storage Temperature Range
-40
+75
+90 C C Typ.
+25 NOTE 1) Within the operation temperature range, the module is 3GPP compliant. At present, this temperature range is only for reference and needs to be further tested 7.4. Current Consumption The values of current consumption are shown below. Table 39: SC200R-CE Current Consumption Parameter Description Conditions Min Typ. Max Unit IVBAT OFF state Power down GSM/GPRS supply current Sleep (USB disconnected)
@DRX=2 20 TBD uA mA SC200R_Hardware_Design 86 / 125 Smart Module Series SC200R Hardware Design CDMA supply current BC0 CH283 @ Slot Cycle Index=1 BC0 CH283 @ Slot Cycle Index=7 Sleep (USB disconnected)
@DRX=5 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=7 Sleep (USB disconnected)
@DRX=8 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=5 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=7 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=5 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=7 Sleep (USB disconnected)
@DRX=9 EGSM900 @PCL 5 EGSM900 @PCL 12 EGSM900 @PCL 19 DCS1800 @PCL 0 DCS1800 @PCL 7 DCS1800 @PCL 15 WCDMA supply current LTE-FDD supply current LTE-TDD supply current GSM voice call TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA SC200R_Hardware_Design 87 / 125 Smart Module Series SC200R Hardware Design WCDMA voice call B1 @max power B8 @max power GPRS data transfer EDGE data transfer EGSM900 (1UL/4DL) @PCL 5 EGSM900 (2UL/3DL) @PCL 5 EGSM900 (3UL/2DL) @PCL 5 EGSM900 (4UL/1DL) @PCL 5 DCS1800 (1UL/4DL) @PCL 0 DCS1800 (2UL/3DL) @PCL 0 DCS1800 (3UL/2DL) @PCL0 DCS1800 (4UL/1DL) @PCL 0 EGSM900 (1UL/4DL) @PCL 8 EGSM900 (2UL/3DL) @PCL 8 EGSM900 (3UL/2DL) @PCL 8 EGSM900 (4UL/1DL) @PCL 8 DCS1800 (1UL/4DL) @PCL 2 DCS1800 (2UL/3DL) @PCL 2 DCS1800 (3UL/2DL) @PCL 2 DCS1800 (4UL/1DL) @PCL 2 WCDMA data transfer EVDO/CDMA data transfer LTE transfer data B1 (HSDPA) @max power B8 (HSDPA) @max power B1 (HSUPA) @max power B8 (HSUPA) @max power BC0 @max power LTE-FDD B1 @max power LTE-FDD B3 @max power TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA SC200R_Hardware_Design 88 / 125 Smart Module Series SC200R Hardware Design Table 40: SC200R-EM* Current Consumption Parameter Description Conditions Min Typ. Max Unit LTE-FDD B5 @max power LTE-FDD B8 @max power LTE-TDD B34 @max power LTE-TDD B38 @max power LTE-TDD B39 @max power LTE-TDD B40 @max power LTE-TDD B41 @max power OFF state Power down Sleep (USB disconnected)
@DRX=2 GSM/GPRS supply current Sleep (USB disconnected)
@DRX=5 WCDMA supply current Sleep (USB disconnected)
@DRX=8 IVBAT LTE-FDD supply current Sleep (USB disconnected)
@DRX=8 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=6 LTE-TDD supply current Sleep (USB disconnected)
@DRX=8 Sleep (USB disconnected)
@DRX=9 TBD TBD TBD TBD TBD TBD TBD 20 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA uA mA mA mA mA mA mA mA mA mA mA mA mA SC200R_Hardware_Design 89 / 125 Smart Module Series SC200R Hardware Design EGSM850 @PCL 5 EGSM850 @PCL 12 EGSM850 @PCL 19 EGSM900 @PCL 5 EGSM900 @PCL 12 EGSM900 @PCL 19 DCS1800 @PCL 0 DCS1800 @PCL 7 DCS1800 @PCL 15 DCS1900 @PCL 0 DCS1900 @PCL 7 DCS1900 @PCL 15 B1 @max power B2 @max power B5 @max power B8 @max power EGSM850(1UL/4DL) @PCL 5 EGSM850 (2UL/3DL) @PCL 5 EGSM850 (3UL/2DL) @PCL 5 EGSM850 (4UL/1DL) @PCL 5 EGSM900 (1UL/4DL) @PCL 5 EGSM900 (2UL/3DL) @PCL 5 EGSM900 (3UL/2DL) @PCL 5 EGSM900 (4UL/1DL) @PCL 5 DCS1800 (1UL/4DL) @PCL 0 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA GSM voice call WCDMA voice call GPRS data transfer SC200R_Hardware_Design 90 / 125 Smart Module Series SC200R Hardware Design DCS1800 (2UL/3DL) @PCL 0 DCS1800 (3UL/2DL) @PCL0 DCS1800 (4UL/1DL) @PCL 0 DCS1900 (1UL/4DL) @PCL 0 DCS1900 (2UL/3DL) @PCL 0 DCS1900 (3UL/2DL) @PCL0 DCS1900 (4UL/1DL) @PCL 0 EGSM850(1UL/4DL) @PCL 8 EGSM850 (2UL/3DL) @PCL 8 EGSM850 (3UL/2DL) @PCL 8 EGSM850 (4UL/1DL) @PCL 8 EGSM900 (1UL/4DL) @PCL 8 EGSM900 (2UL/3DL) @PCL 8 EGSM900 (3UL/2DL) @PCL 8 DCS1800 (1UL/4DL) @PCL 2 DCS1800 (2UL/3DL) @PCL 2 DCS1800 (3UL/2DL) @PCL 2 DCS1800 (4UL/1DL) @PCL 2 DCS1900 (1UL/4DL) @PCL 2 DCS1900 (2UL/3DL) @PCL 2 DCS1900 (3UL/2DL) @PCL 2 DCS1900 (4UL/1DL) @PCL 2 B1 (HSDPA) @max power B2 (HSDPA) @max power B5 (HSDPA) @max power TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA EDGE data transfer WCDMA data transfer SC200R_Hardware_Design 91 / 125 Smart Module Series SC200R Hardware Design B8 (HSDPA) @max power B1 (HSUPA) @max power B2 (HSUPA) @max power B5 (HSUPA) @max power B8 (HSUPA) @max power LTE-FDD B1 @max power LTE-FDD B2 @max power LTE-FDD B3 @max power LTE-FDD B5 @max power LTE-FDD B7 @max power LTE-FDD B8 @max power LTE-FDD B20 @max power LTE-FDD B28 @max power LTE-TDD B38 @max power LTE-TDD B39 @max power LTE-TDD B40 @max power LTE-TDD B41 @max power LTE data transfer TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD 20 3.9 3 2.7 4.7 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA uA mA mA mA mA Table 41: SC200R-NA* Current Consumption Parameter Description Conditions Min Typ. Max Unit OFF state Power down Sleep (USB disconnected)
@DRX=6 IVBAT WCDMA supply current Sleep (USB disconnected)
@DRX=8 Sleep (USB disconnected)
@DRX=9 LTE-FDD Sleep (USB disconnected) SC200R_Hardware_Design 92 / 125 Smart Module Series SC200R Hardware Design supply current @DRX=6 LTE-TDD supply current WCDMA voice call WCDMA data transfer B5 (HSDPA) @max power B2 (HSUPA) @max power Sleep (USB disconnected)
@DRX=8 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=8 B2 @max power B4 @max power B5 @max power B2 (HSDPA) @max power B4 (HSDPA) @max power B4 (HSUPA) @max power B5 (HSUPA) @max power LTE-FDD B2 @max power LTE-FDD B4 @max power LTE-FDD B5 @max power LTE-FDD B7 @max power LTE-FDD B12 @max power LTE-FDD B17@max power LTE-FDD B25 @max power LTE-FDD B26 @max power LTE-FDD B66 @max power LTE-FDD B71 @max power 3.1 4.8 3.1 645 560 480 600 560 450 530 530 445 830 720 550 965 610 655 665 585 837 620 750 750 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA LTE data transfer LTE-FDD B13 @max power LTE-FDD B14 @max power SC200R_Hardware_Design 93 / 125 Smart Module Series SC200R Hardware Design LTE-TDD B41 @max power 481 mA Table 42: SC200R-JP* Current Consumption Parameter Description Conditions Min Typ. Max Unit IVBAT LTE-TDD supply current Sleep (USB disconnected)
@DRX=8 OFF state Power down Sleep (USB disconnected)
@DRX=6 WCDMA supply current Sleep (USB disconnected)
@DRX=8 LTE-FDD supply current Sleep (USB disconnected)
@DRX=8 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=9 Sleep (USB disconnected)
@DRX=6 Sleep (USB disconnected)
@DRX=9 B1 @max power B6 @max power B8 @max power B19 @max power B1 (HSDPA) @max power B6 (HSDPA) @max power B8 (HSDPA) @max power B19 (HSDPA) @max power B1 (HSUPA) @max power WCDMA voice call WCDMA data transfer 20 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD uA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA SC200R_Hardware_Design 94 / 125 Smart Module Series SC200R Hardware Design B6 (HSUPA) @max power B8 (HSUPA) @max power B19 (HSUPA) @max power LTE-FDD B1 @max power LTE-FDD B3 @max power LTE-FDD B5 @max power LTE-FDD B8 @max power LTE-FDD B11 @max power LTE-FDD B18 @max power LTE-FDD B19 @max power LTE-FDD B21 @max power LTE-FDD B26 @max power LTE-FDD B28 @max power LTE-TDD B41 @max power TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD mA mA mA mA mA mA mA mA mA mA mA mA mA mA LTE data transfer NOTE
* means under development. SC200R_Hardware_Design 95 / 125 Smart Module Series SC200R Hardware Design 7.5. RF Output Power The following table shows the RF output power of SC200R module. Table 43: SC200R-CE RF Output Power EVDO/CDMA BC0 24dBm+3/-1dB Max. 33dBm 2dB 30dBm 2dB 24dBm+1/-3dB 24dBm+1/-3dB 23dBm 2dB 23dBm 2dB 23dBm 2dB 23dBm 2dB 23dBm 2dB 23dBm 2dB 23dBm 2dB 23dBm 2dB 23dBm 2dB Min. 5dBm 5dB 0dBm 5dB
<-49dBm
<-49dBm
<-49dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm Frequency EGSM900 DCS1800 WCDMA B1 WCDMA B8 LTE-FDD B1 LTE-FDD B3 LTE-FDD B5 LTE-FDD B8 LTE-FDD B34 LTE-TDD B38 LTE-TDD B39 LTE-TDD B40 LTE-TDD B41 SC200R_Hardware_Design 96 / 125 Smart Module Series SC200R Hardware Design Table 44: SC200R-EM* RF Output Power Frequency GSM850 EGSM900 DCS1800 PCS1900 WCDMA B1 WCDMA B2 WCDMA B5 WCDMA B8 LTE-FDD B1 LTE-FDD B2 LTE-FDD B3 LTE-FDD B5 LTE-FDD B7 LTE-FDD B8 LTE-FDD B20 LTE-FDD B28 LTE-TDD B38 LTE-TDD B39 LTE-TDD B40 LTE-TDD B41 Max. TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Min. TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD SC200R_Hardware_Design 97 / 125 Smart Module Series SC200R Hardware Design Table 45: SC200R-NA* RF Output Power Max. 24dBm+1/-3dB 24dBm+1/-3dB 24dBm+1/-3dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB 23dBm2dB Min.
<-49dBm
<-49dBm
<-49dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm
<-39dBm Frequency WCDMA B2 WCDMA B4 WCDMA B5 LTE-FDD B2 LTE-FDD B4 LTE-FDD B5 LTE-FDD B7 LTE-FDD B12 LTE-FDD B13 LTE-FDD B14 LTE-FDD B17 LTE-FDD B25 LTE-FDD B26 LTE-FDD B66 LTE-FDD B71 LTE-TDD B41 SC200R_Hardware_Design 98 / 125 Smart Module Series SC200R Hardware Design Table 46: SC200R-JP* RF Output Power Max. TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Min. TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD Frequency WCDMA B1 WCDMA B6 WCDMA B8 WCDAM B19 LTE-FDD B1 LTE-FDD B3 LTE-FDD B5 LTE-FDD B8 LTE-FDD B11 LTE-FDD B18 LTE-FDD B19 LTE-FDD B21 LTE-FDD B26 LTE-FDD B28 LTE-TDD B41 NOTES 1. 2. In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. This design conforms to the GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1.
* means under development. SC200R_Hardware_Design 99 / 125 Smart Module Series SC200R Hardware Design 7.6. RF Receiving Sensitivity The following table shows the RF receiving sensitivity of SC200R module. Table 47: SC200R-CE RF Receiving Sensitivity Receive Sensitivity (Typ.) Primary Diversity SIMO 3GPP (SIMO) Frequency EGSM900 DCS1800 WCDMA B1 WCDMA B8 TBD TBD TBD TBD EVDO/CDMA BC0 TBD LTE-FDD B1 (10M) TBD LTE-FDD B3 (10M) TBD LTE-FDD B5 (10M) TBD LTE-FDD B8 (10M) TBD LTE-TDD B34 (10M) TBD LTE-TDD B38 (10M) TBD LTE-TDD B39 (10M) TBD LTE-TDD B40 (10M) TBD LTE-TDD B41 (10M) TBD
TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
-102.4dBm
-102.4dBm
-106.7dBm
-103.7dBm
-104dBm
-96.3dBm
-93.3dBm
-94.3dBm
-93.3dBm
-96.3dBm
-96.3dBm
-96.3dBm
-96.3dBm
-94.3dBm SC200R_Hardware_Design 100 / 125 Smart Module Series SC200R Hardware Design Table 48: SC200R-EM RF Receiving Sensitivity Receive Sensitivity (Typ.) 3GPP (SIMO) Primary Diversity SIMO GSM850 TBD
Frequency EGSM900 DCS1800 PCS1900 WCDMA B1 WCDMA B2 WCDMA B5 WCDMA B8 TBD TBD TBD TBD TBD TBD TBD LTE-FDD B1 (10M) TBD LTE-FDD B2 (10M) TBD LTE-FDD B3 (10M) TBD LTE-FDD B5 (10M) TBD LTE-FDD B7 (10M) TBD LTE-FDD B8 (10M) TBD LTE-FDD B20 (10M) TBD LTE-FDD B28(10M) TBD LTE-TDD B38 (10M) TBD LTE-TDD B39 (10M) TBD LTE-TDD B40 (10M) TBD LTE-TDD B41 (10M) TBD
TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
-102.4dBm
-102.4dBm
-102.4dBm
-102.4dBm
-106.7dBm
-104.7dBm
-104.7dBm
-103.7dBm
-96.3dBm
-94.3dBm
-93.3dBm
-94.3dBm
-94.3dBm
-93.3dBm
-93.3dBm
-94.8dBm
-96.3dBm
-96.3dBm
-96.3dBm
-94.3dBm SC200R_Hardware_Design 101 / 125 Smart Module Series SC200R Hardware Design Table 49: SC200-NA* RF Receiving Sensitivity Receive Sensitivity (Typ.) Primary Diversity SIMO WCDMA B5
-111
-111.5
-104.7dBm LTE-FDD B5 (10M)
-99.5
-102.5
-94.3dBm Frequency WCDMA B2
-110 WCDMA B4
-110.5 LTE-FDD B2 (10M)
-98 LTE-FDD B4 (10M)
-98.5 LTE-FDD B7 (10M)
-96 LTE-FDD B12 (10M)
-97 LTE-FDD B13 (10M)
-99 LTE-FDD B14 (10M)
-98 LTE-FDD B17 (10M)
-96.5 LTE-FDD B25 (10M)
-97 LTE-FDD B26 (10M)
-99 LTE-FDD B66 (10M)
-98 LTE-FDD B71 (10M)
-97.5 LTE-TDD B41 (10M)
-98
-110
-110.5
-111
-98
-98
-99.5
-98
-98
-97
-97
-98
-97
-99
-98
-97
-98
-111
-111
-100
-101
-100
-100
-101
-100
-100
-100
-102
-101
-100
-101 3GPP (SIMO)
-104.7dBm
-106.7dBm
-94.3dBm
-96.3dBm
-93.3dBm
-93.3dBm
-93.3dBm
-93.3dBm
-93.3dBm
-92.8dBm
-93.8dBm
-96.3dBm
-93.5dBm
-94.3dBm SC200R_Hardware_Design 102 / 125 Smart Module Series SC200R Hardware Design Table 50: SC200-JP*RF Receiving Sensitivity Receive Sensitivity (Typ.) Primary Diversity SIMO 3GPP (SIMO) TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
-102.4dBm
-102.4dBm
-106.7dBm
-103.7dBm
-96.3dBm
-93.3dBm
-94.3dBm
-93.3dBm
-96.3dBm
-96.3dBm
-96.3dBm
-96.3dBm
-93.8dBm
-94.8dBm
-94.3dBm Frequency WCDMA B1 WCDMA B6 WCDMA B8 WCDAM B19 TBD TBD TBD TBD LTE-FDD B1 (10M) TBD LTE-FDD B3 (10M) TBD LTE-FDD B5 (10M) TBD LTE-FDD B8 (10M) TBD LTE-FDD B11 (10M) TBD LTE-FDD B18 (10M) TBD LTE-FDD B19 (10M) TBD LTE-FDD B21 (10M) TBD LTE-FDD B26 (10M) TBD LTE-FDD B28 (10M) LTE-TDD B41 (10M) TBD TBD NOTE
* means under development. SC200R_Hardware_Design 103 / 125 Smart Module Series SC200R Hardware Design 7.7. Electrostatic Discharge The module is not protected against electrostatic discharge (ESD) in general. Consequently, it should be subject to ESD handling precautions that are typically applied to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module. The following table shows the electrostatic discharge characteristics of SC200R module. Table 51: ESD Characteristics ( Temperature: 25 C, Humidity: 45%) Tested Points Contact Discharge Air Discharge Unit VBAT, GND
+/-5 All Antenna Interfaces
+/-5 Other Interfaces
+/-0.5
+/-10
+/-10
+/-1 KV KV KV SC200R_Hardware_Design 104 / 125 Smart Module Series SC200R Hardware Design 8 Mechanical Dimensions This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the tolerances for dimensions without tolerance values are 0.05 mm. 8.1. Mechanical Dimensions of the Module Pin 1 Top view Side view Figure 40: SC200R Module Top and Side Dimensions SC200R_Hardware_Design 105 / 125 Smart Module Series SC200R Hardware Design Figure 41: SC200R Module Bottom Dimensions (Top View) SC200R_Hardware_Design 106 / 125 Smart Module Series SC200R Hardware Design 8.2. Recommended Footprint Figure 42: Recommended Footprint (Top View) NOTES on the host PCB. 1. For easy maintenance of the module, keep about 3 mm between the module and other components 2. All RESERVED pins should be kept open and MUST NOT be connected to ground. SC200R_Hardware_Design 107 / 125 Smart Module Series SC200R Hardware Design 8.3. Top and Bottom Views of the Module Figure 43: Top View of the Module Figure 44: Bottom View of the Module NOTE These are renderings of SC200R module. For authentic dimension and appearance, please refer to the module that you receive from Quectel. SC200R_Hardware_Design 108 / 125 Smart Module Series SC200R Hardware Design 9 Storage, Manufacturing and Packaging 9.1. Storage SC200R is stored in a vacuum-sealed bag. It is rated at MSL 3, and its storage restrictions are shown as below. 1. Shelf life in the vacuum-sealed bag: 12 months at <40C/90%RH. 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
Mounted within 168 hours at the factory environment of 30 C/60%RH. Stored at <10%RH. 3. Devices require baking before mounting, if any circumstance below occurs. When the ambient temperature is 23 C 5 C and the humidity indication card shows the humidity is > 10% before opening the vacuum-sealed bag. Device mounting cannot be finished within 168 hours at factory conditions of 30 C/60%RH. If baking is required, devices may be baked for 8 hours at 120 C 5 C. As the plastic package cannot be subjected to high temperature, it should be removed from devic es before high temperature (120 C) baking. If shorter baking time is desired, please refer to IPC
/JEDECJ-STD-033 for the baking procedure. NOTE 4. SC200R_Hardware_Design 109 / 125 Smart Module Series SC200R Hardware Design 9.2. Manufacturing and Soldering Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18 mm~0.20 mm. It is recommended to slightly reduce the amount of solder paste for LGA pads, thus avoiding short-circuit. For more details, please refer to document [4]. It is suggested that the peak reflow temperature is 238~245 C, and the absolute maximum reflow temperature is 245 C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below:
Figure 45: Recommended Reflow Soldering Thermal Profile Table 52: Recommended Thermal Profile Parameters Factor Soak Zone Max slope Recommendation 1 to 3 C/sec SC200R_Hardware_Design 110 / 125 Smart Module Series SC200R Hardware Design Soak time (between A and B: 150 C and 200 C) 60 to 120 sec Reflow Zone Max slope Reflow time (D: over 220 C) Max temperature Cooling down slope Reflow Cycle Max reflow cycle 2 to 3 C/sec 40 to 60 sec 238 C ~ 245 C 1 to 4 C/sec 1 SC200R_Hardware_Design 111 / 125 Smart Module Series SC200R Hardware Design 9.3. Packaging SC200R is packaged in tape and reel carriers, and sealed in the vacuum-sealed bag. It is not recommended to open the vacuum package before using the module for actual production. Each reel is 380 mm in diameter and contains 200 modules. The following figures show the package details, measured in mm. Figure 46: Tape DimensionsUnit: mm SC200R_Hardware_Design 112 / 125 Smart Module Series SC200R Hardware Design Figure 47: Reel Dimensions (Unit: mm) Table 53: Reel Packaging Model Name SC200R 200 MOQ for MP Minimum Package: 200pcs Minimum Package 4=800pcs Size: 405 mm 390 mm 83 mm N.W: TBD G.W: TBD Size: 425 mm 358 mm 410 mm N.W: TBD G.W: TBD SC200R_Hardware_Design 113 / 125 Smart Module Series SC200R Hardware Design 10 Appendix A References Table 54: Related Documents SN Document Name Remark
[1]
Quectel_Smart_EVB-G2_User_Guide Smart EVB user guide
[2]
Quectel_SC200R_GPIO_Configuration SC200R GPIO Configuration
[3]
Quectel_RF_Layout_Application_Note RF layout application note
[4]
Quectel_Module_Secondary_SMT_User_Guide Module secondary SMT user guide
[5]
Quectel_SC200R_Reference_Design SC200R reference design Table 55: Terms and Abbreviations Abbreviation Description Analog-to-Digital Converter Adaptive Multi-rate Coding Scheme Clear to Send Discontinuous Reception Enhanced Full Rate Enhanced GSM Gaussian Minimum Shift Keying Global Positioning System Graphics Processing Unit ADC AMR CS CTS DRX EFR EGSM GMSK GPS GPU SC200R_Hardware_Design 114 / 125 Smart Module Series SC200R Hardware Design GSM HR I/O Imax Inorm LCD LCM LED LNA LRA MIPI MO MS MT PCB PDU PSK QAM RF RTC Rx SAW SMS Global System for Mobile Communications Half Rate Input/Output Maximum Load Current Normal Current Liquid Crystal Display LCD Module Light Emitting Diode Low Noise Amplifier Linear Resonant Actuator Mobile Industry Processor Interface Mobile Originated Mobile Station (GSM engine) Mobile Terminated Printed Circuit Board Protocol Data Unit Phase Shift Keying Radio Frequency Real Time Clock Receive Surface Acoustic Wave Short Message Service Quadrature Amplitude Modulation QPSK Quadrature Phase Shift Keying TDMA Time Division Multiple Access SC200R_Hardware_Design 115 / 125 Smart Module Series SC200R Hardware Design TE TX UART UMTS URC
(U)SIM USSD Vmax Vnorm Vmin VI VIHmax VIHmin VILmax VILmin VImax VImin VO VOHmax VOHmin VOLmax VOLmin VSWR Terminal Equipment Transmit Universal Asynchronous Receiver & Transmitter Universal Mobile Telecommunications System Unsolicited Result Code
(Universal) Subscriber Identity Module Unstructured Supplementary Service Data Maximum Voltage Value Normal Voltage Value Minimum Voltage Value Voltage Input Maximum Input High Level Voltage Value Minimum Input High Level Voltage Value Maximum Input Low Level Voltage Value Minimum Input Low Level Voltage Value Absolute Maximum Input Voltage Value Absolute Minimum Input Voltage Value Voltage Output Maximum Output High Level Voltage Value Minimum Output High Level Voltage Value Maximum Output Low Level Voltage Value Minimum Output Low Level Voltage Value Voltage Standing Wave Ratio WCDMA Wideband Code Division Multiple Access SC200R_Hardware_Design 116 / 125 Smart Module Series SC200R Hardware Design Scheme Code Rate USF Pre-coded USF BCS Tail Coded Bits Punctured Bits Data Rate Kb/s 11 Appendix B GPRS Coding Schemes Table 56: Description of Different Coding Schemes Radio Block excl.USF and BCS 181 CS-1 1/2 3 3 40 4 456 0 9.05 CS-2 2/3 3 6 268 16 4 588 132 13.4 CS-3 3/4 3 6 312 16 4 676 220 15.6 C4-4 1 3 12 428 16
456 21.4 SC200R_Hardware_Design 117 / 125 Smart Module Series SC200R Hardware Design 12 Appendix C GPRS Multi-slot Classes Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table. Table 57: GPRS Multi-slot Classes Multislot Class Downlink Slots Uplink Slots Active Slots 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 2 3 2 3 3 4 3 4 4 4 3 4 1 1 2 1 2 2 3 1 2 2 3 4 3 4 2 3 3 4 4 4 4 5 5 5 5 5 NA NA SC200R_Hardware_Design 118 / 125 Smart Module Series SC200R Hardware Design 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 5 6 7 8 6 6 6 6 6 8 8 8 8 8 8 5 5 5 5 5 6 7 8 2 3 4 4 6 2 3 4 4 6 8 1 2 3 4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6 6 6 6 SC200R_Hardware_Design 119 / 125 Smart LTE Module Series SC200R Hardware Design CS-1 CS-2 CS-3 CS-4 MCS-1 MCS-2 MCS-3 MCS-4 MCS-5 MCS-6 MCS-7 MCS-8 MCS-9 13 Appendix D EDGE Modulation and Coding Schemes Table 58: EDGE Modulation and Coding Schemes Coding Scheme Modulation Coding Family 1 Timeslot 2 Timeslot 4 Timeslot GMSK GMSK GMSK GMSK GMSK GMSK GMSK GMSK 8-PSK 8-PSK 8-PSK 8-PSK 8-PSK
C B A C B A B A A 9.05kbps 18.1kbps 36.2kbps 13.4kbps 26.8kbps 53.6kbps 15.6kbps 31.2kbps 62.4kbps 21.4kbps 42.8kbps 85.6kbps 8.80kbps 17.60kbps 35.20kbps 11.2kbps 22.4kbps 44.8kbps 14.8kbps 29.6kbps 59.2kbps 17.6kbps 35.2kbps 70.4kbps 22.4kbps 44.8kbps 89.6kbps 29.6kbps 59.2kbps 118.4kbps 44.8kbps 89.6kbps 179.2kbps 54.4kbps 108.8kbps 217.6kbps 59.2kbps 118.4kbps 236.8kbps SC200R_Hardware_Design 120 / 125
1 2 3 4 | Label Info | ID Label/Location Info | 258.30 KiB | August 13 2020 |
gvecrest SC200R-NA Qi-a2202 NA SC200RNANA-E5S1-UGNDA FCC ID:XMR202005SC200RNA IC: 02244-20SC200RNA OP Rearalcl VAN mM SVET LIll6 Win WAVY OT Lies zoaagve oe ee SN z vl
1 2 3 4 | Authorization Declaration | Cover Letter(s) | 58.05 KiB | August 13 2020 |
Quectel Wireless Solutions Company Limited Declaration of Authorization We Name: Quectel Wireless Solutions Company Limited Address: Building 5, Shanghai Business Park PhaseIII, (Area B), No.1016 Tianlin Road, Minhang District Declare that:
Name Representative of agent: Ms. Riley Wei Agent Company name: BTL Inc. Address: No. 29, Jintang Road, Tangzhen Industry Park Pudong New Area City: Shanghai Country: China is authorized to apply for Certification of the following product(s) and signing all the related documents including 731 forms:
Product description: Multi-mode Smart LTE Module Type designation: SC200R-NA Trademark: Quectel FCC ID: XMR202005SC200RNA on our behalf. Date: 2020-06-10 City: Shanghai Name: Jean Hu Function: Certification Section Signature:
1 2 3 4 | Confidentiality Letter | Cover Letter(s) | 68.77 KiB | August 13 2020 |
Quectel Wireless Solutions Company Limited Date:
Federal Communications Commission Authorization and Evaluation Division Confidentiality Request regarding application for certification of FCC ID: XMR202005SC200RNA Pursuant to Sections 0.457 and 0.459 of the Commissions Rules, we hereby request confidential treatment of information accompanying this application as outlined below:
Block Diagram Schematics Operational Description Part Lists and Tune-up information The above materials contain trade secrets and proprietary information not customarily released to the public. The public disclosure of these materials may be harmful to the applicant and provide unjustified benefits to its competitors. The applicant understands that pursuant to Section 0.457 of the Rules, disclosure of this application and all accompanying documentation will not be made before the date of the Grant for this application. Sincerely,
Grantee Contacts Signature Quectel Wireless Solutions Company Limited Jean Hu
1 2 3 4 | Modular Approval Request | Cover Letter(s) | 106.20 KiB | August 13 2020 |
Quectel Wireless Solutions Company Limited FCC Modular Approval Statement Receiver Federal Communication Commission Equipment Authorization Devision, Application Processing Branch 7435 Oakland Mills Road Columbia, MD 21048 Subject:
Modular Approval Statement Date: Jun. 10, 2020 FCC Certification Number: XMR202005SC200RNA Model Name/Number: Multi-mode Smart LTE Module / SC200R-NA TO WHOM IT MAY CONCERN Pursuant to Paragraphs CFR 15.212, we herewith declare for our module. Modular approval requirement Yes No *
(a) The radio elements must have the radio frequency circuitry be shielded. Physical/discrete and tuning capacitors may be located external to the shield, but must be on the module assembly.
*Please provide a detailed explanation if the answer is No.:
(b) The module shall have buffered modulation/data input(s) (if such inputs are provided) to ensure that the module will comply with the requirements set out in the applicable standard under conditions of excessive data rates or over-
modulation.
*Please provide a detailed explanation if the answer is No.:
(c) The module shall have its own power supply regulation on the module. This is to ensure that the module will comply with the requirements set out in the applicable standard regardless of the design of the power supplying circuitry in the host device which houses the module.
*Please provide a detailed explanation if the answer is No.:
(d) The module shall comply with the provisions for external power amplifiers and antennas detailed in this standard. The equipment certification submission shall contain a detailed description of the configuration of all antennas that will be used with the module.
*Please provide a detailed explanation if the answer is No.:
(e) The module shall be tested for compliance with the applicable standard in a stand-alone configuration, i.e. the module must not be inside another device during testing.
*Please provide a detailed explanation if the answer is No.:
(f) The module shall comply with the Category I equipment labeling requirements and CFR 15.212(a)(1)(vi).
*Please provide a detailed explanation if the answer is No.:
1 Yes Yes Yes Yes Yes Yes Quectel Wireless Solutions Company Limited FCC Modular Approval Statement
(g) The module shall comply with applicable RSS-102 exposure requirements and any applicable FCC RF exposure requirement which are based on the intended use/configurations.
*Please provide a detailed explanation if the answer is No.:
(i) The modular transmitter complies with all applicable FCC rules. Instructions for maintaining compliance are given in the user instructions. If you have any questions, please feel free to contact us at the address shown below Best Regards, Yes Yes ____________________
(Signed) Name / Title: Jean Hu/ Certification Section 2
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part1 PCB | Test Report | 1.68 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part2 PCB | Test Report | 4.89 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part3 PCB | Test Report | 5.01 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part4 PCB | Test Report | 4.97 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part5 PCB | Test Report | 4.72 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part6 PCB | Test Report | 5.04 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part7 PCB | Test Report | 5.05 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part8 PCB | Test Report | 5.01 MiB | August 13 2020 |
1 2 3 4 | Test Report Part 27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part9 PCB | Test Report | 5.36 MiB | August 13 2020 |
1 2 3 4 | Test Report Part27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part10 PCB | Test Report | 4.73 MiB | August 13 2020 |
1 2 3 4 | Test Report Part27 WCDMA BAND IV & LTE Band 4&7&12&13&17&41&66&71 R00 Part11 PCB | Test Report | 2.97 MiB | August 13 2020 |
1 2 3 4 | Test Report WCDMA Band II & LTE Band 2&25 R00 Part 1 PCB | Test Report | 3.45 MiB | August 13 2020 |
1 2 3 4 | Test Report WCDMA Band II & LTE Band 2&25 R00 Part 2 PCB | Test Report | 5.12 MiB | August 13 2020 |
1 2 3 4 | Test Report WCDMA Band II & LTE Band 2&25 R00 Part 3 PCB | Test Report | 4.85 MiB | August 13 2020 |
1 2 3 4 | Test Report WCDMA Band II & LTE Band 2&25 R00 Part 4 PCB | Test Report | 5.18 MiB | August 13 2020 |
1 2 3 4 | Test Report WCDMA Band II & LTE Band 2&25 R00 Part 5 PCB | Test Report | 1.20 MiB | August 13 2020 |
1 2 3 4 | Ad Hoc Mode Declaration | Cover Letter(s) | 83.27 KiB | August 13 2020 |
Quectel Wireless Solutions Company Limited Ad Hoc Mode Declaration Date: 2020-06-10 We, the undersigned company Company Name: Quectel Wireless Solutions Company Limited Address: Building 5, Shanghai Business Park PhaseIII, (Area B), No.1016 Tianlin Road, Minhang District, shanghai, China. Declare that:
Product description: Multi-mode Smart LTE Module Type designation: SC200R-NA Brand: Quectel FCC ID: XMR202005SC200RNA 1. The EUT doesnt have Ad Hoc Mode function on non-US frequencies. 802.11a/n Ad Hoc mode should not be supported even on US DFS frequencies (5.25 ~5.35GHz/5.47 ~5.725GHz). 2. In addition, the frequency selection feature is disabled by firmware for devices marketed to the US. The product meets all other requirements specified in Part 15E Section 15.407 and no configuration controls are provided to change the frequency of operations outside the grant of certification for US operation. If you have any questions regarding the authorization, please do not hesitate to contact us, thank you~
Sincerely, Signature: ________________________ Name: Jean Hu Tel: +8602150086326 Email: jean.hu@quectel.com
frequency | equipment class | purpose | ||
---|---|---|---|---|
1 | 2020-08-13 | 2412 ~ 2462 | DTS - Digital Transmission System | Original Equipment |
2 | 2510 ~ 2610 | PCB - PCS Licensed Transmitter | ||
3 | 5745 ~ 5825 | NII - Unlicensed National Information Infrastructure TX | ||
4 | 2402 ~ 2480 | DSS - Part 15 Spread Spectrum Transmitter |
app s | Applicant Information | |||||
---|---|---|---|---|---|---|
1 2 3 4 | Effective |
2020-08-13
|
||||
1 2 3 4 | Applicant's complete, legal business name |
Quectel Wireless Solutions Company Limited
|
||||
1 2 3 4 | FCC Registration Number (FRN) |
0018988279
|
||||
1 2 3 4 | Physical Address |
Building 5, Shanghai Business Park PhaseIII (Area B),No.1016 Tianlin Road, Minhang District
|
||||
1 2 3 4 |
Building 5, Shanghai Business Park PhaseIII
|
|||||
1 2 3 4 |
Shanghai
|
|||||
1 2 3 4 |
China
|
|||||
app s | TCB Information | |||||
1 2 3 4 | TCB Application Email Address |
T******@TIMCOENGR.COM
|
||||
1 2 3 4 | TCB Scope |
A4: UNII devices & low power transmitters using spread spectrum techniques
|
||||
1 2 3 4 |
B1: Commercial mobile radio services equipment in the following 47 CFR Parts 20, 22 (cellular), 24,25 (below 3 GHz) & 27
|
|||||
app s | FCC ID | |||||
1 2 3 4 | Grantee Code |
XMR
|
||||
1 2 3 4 | Equipment Product Code |
202005SC200RNA
|
||||
app s | Person at the applicant's address to receive grant or for contact | |||||
1 2 3 4 | Name |
J**** H****
|
||||
1 2 3 4 | Telephone Number |
+8602******** Extension:
|
||||
1 2 3 4 | Fax Number |
+8621********
|
||||
1 2 3 4 |
j******@quectel.com
|
|||||
app s | Technical Contact | |||||
n/a | ||||||
app s | Non Technical Contact | |||||
n/a | ||||||
app s | Confidentiality (long or short term) | |||||
1 2 3 4 | Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | Yes | ||||
1 2 3 4 | Long-Term Confidentiality Does this application include a request for confidentiality for any portion(s) of the data contained in this application pursuant to 47 CFR § 0.459 of the Commission Rules?: | No | ||||
if no date is supplied, the release date will be set to 45 calendar days past the date of grant. | ||||||
app s | Cognitive Radio & Software Defined Radio, Class, etc | |||||
1 2 3 4 | Is this application for software defined/cognitive radio authorization? | No | ||||
1 2 3 4 | Equipment Class | DTS - Digital Transmission System | ||||
1 2 3 4 | PCB - PCS Licensed Transmitter | |||||
1 2 3 4 | NII - Unlicensed National Information Infrastructure TX | |||||
1 2 3 4 | DSS - Part 15 Spread Spectrum Transmitter | |||||
1 2 3 4 | Description of product as it is marketed: (NOTE: This text will appear below the equipment class on the grant) | Multi-mode Smart LTE Module | ||||
1 2 3 4 | Related OET KnowledgeDataBase Inquiry: Is there a KDB inquiry associated with this application? | No | ||||
1 2 3 4 | Modular Equipment Type | Single Modular Approval | ||||
1 2 3 4 | Purpose / Application is for | Original Equipment | ||||
1 2 3 4 | Composite Equipment: Is the equipment in this application a composite device subject to an additional equipment authorization? | Yes | ||||
1 2 3 4 | Related Equipment: Is the equipment in this application part of a system that operates with, or is marketed with, another device that requires an equipment authorization? | No | ||||
1 2 3 4 | Grant Comments | Output power listed is conducted. Single Modular Approval for mobile RF Exposure condition. The module antenna(s) must be installed and operated so as to meet the RF exposure compliance separation distance of 20 cm, and any additional testing and authorization process as required. Co-location of this module with other transmitters that operate simultaneously are required to be evaluated using the FCC multi-transmitter procedures. The use of antennas other than described in this filing require addition RF exposure evaluation. Approved for OEM integration only. The grantee must provide OEM integrators, or end-users if marketed directly to end-users, with installation and operating instructions for satisfying FCC multi-transmitter product guidelines. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. This device supports 20 and 40 MHz bandwidth modes. | ||||
1 2 3 4 | Output power listed is conducted. Single Modular Approval for mobile RF Exposure condition. The module antenna(s) must be installed and operated so as to meet the RF exposure compliance separation distance of 20 cm, and any additional testing and authorization process as required. Co-location of this module with other transmitters that operate simultaneously are required to be evaluated using the FCC multi-transmitter procedures. The use of antennas other than described in this filing require addition RF exposure evaluation. Approved for OEM integration only. The grantee must provide OEM integrators, or end-users if marketed directly to end-users, with installation and operating instructions for satisfying FCC multi-transmitter product guidelines. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. This device supports LTE of 1.4, 3, 5, 10, 15, and 20 MHz bandwidth modes for FDD LTE Bands 2, 4, 25 and 66; LTE of 5, 10, 15, and 20 MHz bandwidth modes for FDD LTE Bands 7 and 71; LTE of 1.4, 3, 5, and 10 MHz bandwidth modes for FDD LTE Bands 5 and 12; LTE of 5, and 10 MHz bandwidth modes for FDD LTE Bands 13, 14 and 17; LTE of 1.4, 3, 5, 10, and 15 MHz bandwidth modes for FDD LTE Band 26; and LTE of 5, 10, 15, and 20 MHz bandwidth modes for TDD LTE Band 41. This device contains functions that are not operational in U.S. Territories; this filing is applicable only for U.S. operations. | |||||
1 2 3 4 | Output power listed is conducted. Single Modular Approval for mobile RF Exposure condition. The module antenna(s) must be installed and operated so as to meet the RF exposure compliance separation distance of 20 cm, and any additional testing and authorization process as required. Co-location of this module with other transmitters that operate simultaneously are required to be evaluated using the FCC multi-transmitter procedures. The use of antennas other than described in this filing require addition RF exposure evaluation. Approved for OEM integration only. The grantee must provide OEM integrators, or end-users if marketed directly to end-users, with installation and operating instructions for satisfying FCC multi-transmitter product guidelines. This grant is valid only when the device is sold to OEM integrators and the OEM integrators are instructed to ensure that the end user has no manual instructions to remove or install the device. | |||||
1 2 3 4 | Is there an equipment authorization waiver associated with this application? | No | ||||
1 2 3 4 | If there is an equipment authorization waiver associated with this application, has the associated waiver been approved and all information uploaded? | No | ||||
app s | Test Firm Name and Contact Information | |||||
1 2 3 4 | Firm Name |
BTL INC.
|
||||
1 2 3 4 | Name |
S******** H******
|
||||
1 2 3 4 | Telephone Number |
+86-7******** Extension:
|
||||
1 2 3 4 |
S******@newbtl.com
|
|||||
Equipment Specifications | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
1 | 1 | 15C | CC | 2402 | 2480 | 0.0018 | |||||||||||||||||||||||||||||||||||
1 | 2 | 15C | CC | 2412 | 2462 | 0.2576 | |||||||||||||||||||||||||||||||||||
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
2 | 1 | 22H | 826.4 | 846.6 | 0.1973 | 5.7 Hz | 4M17G7D | ||||||||||||||||||||||||||||||||||
2 | 2 | 22H | 825.5 | 847.5 | 0.2254 | 5.62 Hz | 2M71W7D | ||||||||||||||||||||||||||||||||||
2 | 3 | 22H | 829 | 844 | 0.2741 | 5.13 Hz | 9M02G7D | ||||||||||||||||||||||||||||||||||
2 | 4 | 22H | 829 | 844 | 0.2213 | 5.13 Hz | 9M00W7D | ||||||||||||||||||||||||||||||||||
2 | 5 | 22H | 829 | 844 | 0.2559 | 5.97 Hz | 9M01G7D | ||||||||||||||||||||||||||||||||||
2 | 6 | 22H | 831.5 | 841.5 | 0.2421 | 5.96 Hz | 13M4G7D | ||||||||||||||||||||||||||||||||||
2 | 7 | 22H | 831.5 | 841.5 | 0.2104 | 5.96 Hz | 13M4W7D | ||||||||||||||||||||||||||||||||||
2 | 8 | 24E | 1852.4 | 1907.6 | 0.1901 | 5.95 Hz | 4M15G7D | ||||||||||||||||||||||||||||||||||
2 | 9 | 24E | 1855 | 1905 | 0.2317 | 4.87 Hz | 13M5G7D | ||||||||||||||||||||||||||||||||||
2 | 1 | 24E | 1857.5 | 1902.5 | 0.2317 | 4.7 Hz | 8M97G7D | ||||||||||||||||||||||||||||||||||
2 | 11 | 24E | 1860 | 1900 | 0.2138 | 5.78 Hz | 18M0G7D | ||||||||||||||||||||||||||||||||||
2 | 12 | 24E | 1860 | 1900 | 0.1941 | 5.78 Hz | 18M0W7D | ||||||||||||||||||||||||||||||||||
2 | 13 | 24E | 1857.5 | 1907.5 | 0.2399 | 5.89 Hz | 13M4G7D | ||||||||||||||||||||||||||||||||||
2 | 14 | 24E | 1857.5 | 1907.5 | 0.2094 | 5.89 Hz | 13M4W7D | ||||||||||||||||||||||||||||||||||
2 | 15 | 24E | 1860 | 1905 | 0.2213 | 5.91 Hz | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 16 | 24E | 1860 | 1905 | 0.1888 | 5.91 Hz | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 17 | 27 | 1712.4 | 1752.6 | 0.1901 | 5.38 Hz | 4M14G7D | ||||||||||||||||||||||||||||||||||
2 | 18 | 27 | 1717.5 | 1747.5 | 0.1977 | 6 Hz | 13M5W7D | ||||||||||||||||||||||||||||||||||
2 | 19 | 27 | 1720 | 1745 | 0.2285 | 5.28 Hz | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 2 | 27 | 1720 | 1745 | 0.1849 | 5.28 Hz | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 21 | 27 | 2505 | 2565 | 0.2851 | 4.7 Hz | 9M00G7D | ||||||||||||||||||||||||||||||||||
2 | 22 | 27 | 2507.5 | 2562.5 | 0.2443 | 5.55 Hz | 13M5W7D | ||||||||||||||||||||||||||||||||||
2 | 23 | 27 | 2510 | 2610 | 0.2786 | 5.75 Hz | 18M0G7D | ||||||||||||||||||||||||||||||||||
2 | 24 | 27 | 2510 | 2610 | 0.2168 | 5.75 Hz | 18M0W7D | ||||||||||||||||||||||||||||||||||
2 | 25 | 27 | 1715 | 1775 | 0.2931 | 5.36 Hz | 8M97G7D | ||||||||||||||||||||||||||||||||||
2 | 26 | 27 | 1715 | 1775 | 0.2344 | 5.36 Hz | 8M95W7D | ||||||||||||||||||||||||||||||||||
2 | 27 | 27 | 1720 | 1770 | 0.2454 | 5.99 Hz | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 28 | 27 | 1720 | 1770 | 0.1932 | 5.99 Hz | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 29 | 27 | 701.5 | 713.5 | 0.2904 | 5.65 Hz | 4M52G7D | ||||||||||||||||||||||||||||||||||
2 | 3 | 27 | 699.7 | 715.3 | 0.2421 | 4.61 Hz | 1M10W7D | ||||||||||||||||||||||||||||||||||
2 | 31 | 27 | 704 | 711 | 0.2844 | 5.96 Hz | 8M98G7D | ||||||||||||||||||||||||||||||||||
2 | 32 | 27 | 704 | 711 | 0.2334 | 5.96 Hz | 8M98W7D | ||||||||||||||||||||||||||||||||||
2 | 33 | 27 | 779.5 | 784.5 | 0.2864 | 5.96 Hz | 4M52G7D | ||||||||||||||||||||||||||||||||||
2 | 34 | 27 | 782 | 782 | 0.2831 | 5.96 Hz | 8M91G7D | ||||||||||||||||||||||||||||||||||
2 | 35 | 27 | 782 | 782 | 0.2133 | 5.96 Hz | 8M94W7D | ||||||||||||||||||||||||||||||||||
2 | 36 | 27 | 709 | 711 | 0.3034 | 5.41 Hz | 9M00G7D | ||||||||||||||||||||||||||||||||||
2 | 37 | 27 | 709 | 711 | 0.2454 | 5.41 Hz | 9M01W7D | ||||||||||||||||||||||||||||||||||
2 | 38 | 27 | 2501 | 2685 | 0.2393 | 4.83 Hz | 8M96W7D | ||||||||||||||||||||||||||||||||||
2 | 39 | 27 | 2506 | 2680 | 0.2512 | 5.76 Hz | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 4 | 27 | 2506 | 2680 | 0.2128 | 5.76 Hz | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 41 | 27 | 668 | 693 | 0.2405 | 6.51 Hz | 8M98G7D | ||||||||||||||||||||||||||||||||||
2 | 42 | 27 | 670.5 | 690.5 | 0.2051 | 6.98 Hz | 13M5W7D | ||||||||||||||||||||||||||||||||||
2 | 43 | 27 | 673 | 688 | 0.2388 | 6.81 Hz | 17M9G7D | ||||||||||||||||||||||||||||||||||
2 | 44 | 27 | 673 | 688 | 0.1986 | 6.81 Hz | 17M9W7D | ||||||||||||||||||||||||||||||||||
2 | 45 | 9 | 793 | 793 | 0.2698 | 5.77 Hz | 8M95G7D | ||||||||||||||||||||||||||||||||||
2 | 46 | 9 | 793 | 793 | 0.2173 | 5.77 Hz | 8M97W7D | ||||||||||||||||||||||||||||||||||
2 | 47 | 9 | 815.5 | 822.5 | 0.2717 | 3.4 Hz | 2M96G7D | ||||||||||||||||||||||||||||||||||
2 | 48 | 9 | 814.7 | 823.3 | 0.228 | 5.92 Hz | 1M08W7D | ||||||||||||||||||||||||||||||||||
2 | 49 | 9 | 819 | 819 | 0.2512 | 4.38 Hz | 8M93G7D | ||||||||||||||||||||||||||||||||||
2 | 5 | 9 | 819 | 819 | 0.1845 | 4.38 Hz | 8M93W7D | ||||||||||||||||||||||||||||||||||
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
3 | 1 | 15E | CC | 5180 | 5240 | 0.463 | |||||||||||||||||||||||||||||||||||
3 | 2 | 15E | CC | 5250 | 5320 | 0.0421 | |||||||||||||||||||||||||||||||||||
3 | 3 | 15E | CC | 5500 | 5700 | 0.0494 | |||||||||||||||||||||||||||||||||||
3 | 4 | 15E | CC | 5745 | 5825 | 0.0355 | |||||||||||||||||||||||||||||||||||
Line | Rule Parts | Grant Notes | Lower Frequency | Upper Frequency | Power Output | Tolerance | Emission Designator | Microprocessor Number | |||||||||||||||||||||||||||||||||
4 | 1 | 15C | CC | 2402.00000000 | 2480.00000000 | 0.0020000 |
some individual PII (Personally Identifiable Information) available on the public forms may be redacted, original source may include additional details
This product uses the FCC Data API but is not endorsed or certified by the FCC